\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{lim^1 and Milnor sequences} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{abstract_characterizations}{Abstract characterizations}\dotfill \pageref*{abstract_characterizations} \linebreak \noindent\hyperlink{vanishing_of_}{Vanishing of $\lim^1$}\dotfill \pageref*{vanishing_of_} \linebreak \noindent\hyperlink{relation_to_groups}{Relation to $Ext$-groups}\dotfill \pageref*{relation_to_groups} \linebreak \noindent\hyperlink{MilnorSequences}{Milnor exact sequences}\dotfill \pageref*{MilnorSequences} \linebreak \noindent\hyperlink{for_homotopy_groups}{For homotopy groups}\dotfill \pageref*{for_homotopy_groups} \linebreak \noindent\hyperlink{for_chain_homology}{For chain homology}\dotfill \pageref*{for_chain_homology} \linebreak \noindent\hyperlink{for_generalized_cohomology_groups}{For generalized cohomology groups}\dotfill \pageref*{for_generalized_cohomology_groups} \linebreak \noindent\hyperlink{of_spaces}{Of spaces}\dotfill \pageref*{of_spaces} \linebreak \noindent\hyperlink{ForGeneralizedCohomologyOfSpectra}{Of spectra}\dotfill \pageref*{ForGeneralizedCohomologyOfSpectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notation ``$\underset{\longleftarrow}{\lim}^1$'' is common notation for the first [[derived functor]] $R^1 \underset{\longleftarrow}{\lim}$ of the [[limit]] functor. Here we consider the case of limits over [[sequential diagrams]] of [[abelian groups]] (prop. \ref{Lim1IsDerivedLimit} below). In good cases, this is the only obstruction to a naive [[limit]] of homotopy sets being the homotopy classes of the correct [[homotopy limit]]. Such a situation is expressed by a [[short exact sequence|short exact]] \emph{Milnor sequence} (\hyperlink{MilnorSequences}{below}). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{TheBoundaryMapDefiningLim1}\hypertarget{TheBoundaryMapDefiningLim1}{} Given a [[tower]] $A_\bullet$ of [[abelian groups]] \begin{displaymath} \cdots \to A_3 \stackrel{f_2}{\to} A_2 \stackrel{f_1}{\to} A_1 \stackrel{f_0}{\to} A_0 \end{displaymath} write \begin{displaymath} \partial \;\colon\; \underset{n}{\prod} A_n \longrightarrow \underset{n}{\prod} A_n \end{displaymath} for the homomorphism given by \begin{displaymath} \partial \;\colon\; (a_n)_{n \in \mathbb{N}} \mapsto (a_n - f_n(a_{n+1}))_{n \in \mathbb{N}}. \end{displaymath} \end{defn} \begin{remark} \label{LimitAsKernelAnalogousToLim1}\hypertarget{LimitAsKernelAnalogousToLim1}{} The [[limit]] of a sequence as in def. \ref{TheBoundaryMapDefiningLim1} -- hence the group $\underset{\longleftarrow}{\lim}_n A_n$ universally equipped with morphisms $\underset{\longleftarrow}{\lim}_n A_n \overset{p_n}{\to} A_n$ such that all \begin{displaymath} \itexarray{ && \underset{\longleftarrow}{\lim}_n A_n \\ & {}^{\mathllap{p_{n+1}}}\swarrow && \searrow^{\mathrlap{p_n}} \\ A_{n+1} && \overset{f_n}{\longrightarrow} && A_n } \end{displaymath} [[commuting diagram|commute]] -- is equivalently the [[kernel]] of the morphism $\partial$ in def. \ref{TheBoundaryMapDefiningLim1}. \end{remark} \begin{defn} \label{Lim1ViaCokernel}\hypertarget{Lim1ViaCokernel}{} Given a [[tower]] $A_\bullet$ of [[abelian groups]] \begin{displaymath} \cdots \to A_3 \stackrel{f_2}{\to} A_2 \stackrel{f_1}{\to} A_1 \stackrel{f_0}{\to} A_0 \end{displaymath} then $\underset{\longleftarrow}{\lim}^1 A_\bullet$ is the [[cokernel]] of the map $\partial$ in def. \ref{TheBoundaryMapDefiningLim1}, hence the group that makes a [[long exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}_n A_n \longrightarrow \underset{n}{\prod} A_n \stackrel{\partial}{\longrightarrow} \underset{n}{\prod} A_n \longrightarrow \underset{\longleftarrow}{\lim}^1_n A_n \to 0 \,, \end{displaymath} \end{defn} There is a generalization to groups (not necessarily abelian). (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, IX.2.1}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{abstract_characterizations}{}\subsubsection*{{Abstract characterizations}}\label{abstract_characterizations} \begin{prop} \label{PropertiesOfLim1}\hypertarget{PropertiesOfLim1}{} The [[functor]] $\underset{\longleftarrow}{\lim}^1 \colon Ab^{(\mathbb{N}, \geq)} \longrightarrow Ab$ (def. \ref{Lim1ViaCokernel}) satisfies \begin{enumerate}% \item for every [[short exact sequence]] $0 \to A_\bullet \to B_\bullet \to C_\bullet \to 0 \;\;\; \in Ab^{(\mathbb{N}, \geq)}$ then the induced sequence \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}_n A_n \to \underset{\longleftarrow}{\lim}_n B_n \to \underset{\longleftarrow}{\lim}_n C_n \to \underset{\longleftarrow}{\lim}_n^1 A_n \to \underset{\longleftarrow}{\lim}_n^1 B_n \to \underset{\longleftarrow}{\lim}_n^1 C_n \to 0 \end{displaymath} is a [[long exact sequence]] of abelian groups; \item if $A_\bullet$ is a tower such that all maps are [[surjections]], then $\underset{\longleftarrow}{\lim}^1_n A_n \simeq 0$. \end{enumerate} \end{prop} (e.g. \hyperlink{BousfieldKan72}{Bousfield-Kan 72, ch IX, prop. 2.3 and 2.4}, \hyperlink{Switzer75}{Switzer 75, prop. 7.63}, \hyperlink{GoerssJardine96}{Goerss-Jardine 96, section VI. lemma 2.11}) \begin{proof} For the first property: Given $A_\bullet$ a tower of abelian groups, write \begin{displaymath} L^\bullet(A_\bullet) \coloneqq \left[ 0 \to \underset{deg \, 0}{\underbrace{\underset{n}{\prod} A_n}} \overset{\partial}{\longrightarrow} \underset{deg\, 1}{\underbrace{\underset{n}{\prod} A_n}} \to 0 \right] \end{displaymath} for the homomorphism from def. \ref{TheBoundaryMapDefiningLim1} regarded as the single non-trivial differential in a [[cochain complex]] of abelian groups. Then by remark \ref{LimitAsKernelAnalogousToLim1} and def. \ref{Lim1ViaCokernel} we have $H^0(L(A_\bullet)) \simeq \underset{\longleftarrow}{\lim} A_\bullet$ and $H^1(L(A_\bullet)) \simeq \underset{\longleftarrow}{\lim}^1 A_\bullet$. With this, then for a short exact sequence of towers $0 \to A_\bullet \to B_\bullet \to C_\bullet \to 0$ the long exact sequence in question is the [[long exact sequence in homology]] of the corresponding short exact sequence of complexes \begin{displaymath} 0 \to L^\bullet(A_\bullet) \longrightarrow L^\bullet(B_\bullet) \longrightarrow L^\bullet(C_\bullet) \to 0 \,. \end{displaymath} For the second statement: If all the $f_k$ are surjective, then inspection shows that the homomorphism $\partial$ in def. \ref{TheBoundaryMapDefiningLim1} is surjective. Hence its [[cokernel]] vanishes. \end{proof} \begin{lemma} \label{TowersOfAbelianGroupsHasEnoughInjectives}\hypertarget{TowersOfAbelianGroupsHasEnoughInjectives}{} The category $Ab^{(\mathbb{N}, \geq)}$ of [[towers]] of [[abelian groups]] has [[enough injectives]]. \end{lemma} \begin{proof} The functor $(-)_n \colon Ab^{(\mathbb{N}, \geq)} \to Ab$ that picks the $n$-th component of the tower has a [[right adjoint]] $r_n$, which sends an abelian group $A$ to the tower \begin{displaymath} r_n \coloneqq \left[ \cdots \overset{id}{\to} A \overset{id}{\to} \underset{= (r_n)_{n+1}}{\underbrace{A}} \overset{id}{\to} \underset{= (r_n)_n}{\underbrace{A}} \overset{id}{\to} \underset{= (r_n)_{n-1}}{\underbrace{0}} \to 0 \to \cdots \to 0 \to 0 \right] \,. \end{displaymath} Since $(-)_n$ itself is evidently an [[exact functor]], its right adjoint preserves injective objects (\href{injective+object#RightAdjointsOfExactFunctorsPreserveInjectives}{prop.}). So with $A_\bullet \in Ab^{(\mathbb{N}, \geq)}$, let $A_n \hookrightarrow \tilde A_n$ be an injective resolution of the abelian group $A_n$, for each $n \in \mathbb{N}$. Then \begin{displaymath} A_\bullet \overset{(\eta_n)_{n \in \mathbb{N}}}{\longrightarrow} \underset{n \in \mathbb{R}}{\prod} r_n A_n \hookrightarrow \underset{n \in \mathbb{N}}{\prod} r_n \tilde A_n \end{displaymath} is an injective resolution for $A_\bullet$. \end{proof} \begin{prop} \label{Lim1IsDerivedLimit}\hypertarget{Lim1IsDerivedLimit}{} The [[functor]] $\underset{\longleftarrow}{\lim}^1 \colon Ab^{(\mathbb{N}, \geq)} \longrightarrow Ab$ (def. \ref{Lim1ViaCokernel}) is the [[derived functor in homological algebra|first right derived functor]] of the [[limit]] functor $\underset{\longleftarrow}{\lim} \colon Ab^{(\mathbb{N},\geq)} \longrightarrow Ab$. \end{prop} (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, chapter IX.2, remark 2.6}) \begin{proof} By lemma \ref{TowersOfAbelianGroupsHasEnoughInjectives} there are [[enough injectives]] in $Ab^{(\mathbb{N}, \geq)}$. So for $A_\bullet \in Ab^{(\mathbb{N}, \geq)}$ the given tower of abelian groups, let \begin{displaymath} 0 \to A_\bullet \overset{j^0}{\longrightarrow} J^0_\bullet \overset{j^1}{\longrightarrow} J^1_\bullet \overset{j^2}{\longrightarrow} J^2_\bullet \overset{}{\longrightarrow} \cdots \end{displaymath} be an [[injective resolution]]. We need to show that \begin{displaymath} \underset{\longleftarrow}{\lim}^1 A_\bullet \simeq ker(\underset{\longleftarrow}{\lim}(j^2))/im(\underset{\longleftarrow}{\lim}(j^1)) \,. \end{displaymath} Since limits preserve [[kernels]], this is equivalently \begin{displaymath} \underset{\longleftarrow}{\lim}^1 A_\bullet \simeq (\underset{\longleftarrow}{\lim}(ker(j^2)_\bullet))/im(\underset{\longleftarrow}{\lim}(j^1)) \end{displaymath} Now observe that each injective $J^q_\bullet$ is a tower of epimorphism. This follows by the defining [[right lifting property]] applied against the monomorphisms of towers of the following form \begin{displaymath} \itexarray{ \cdots &\to & 0 &\to& 0 &\longrightarrow& 0 &\longrightarrow& \mathbb{Z} &\overset{id}{\longrightarrow}& \cdots &\overset{id}{\longrightarrow}& \mathbb{Z} &\overset{id}{\longrightarrow}& \mathbb{Z} \\ \cdots && \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{incl}} && \downarrow^{\mathrlap{id}} && && \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{id}} \\ \cdots &\to& 0 &\to& 0 &\to & \mathbb{Z} &\underset{id}{\longrightarrow}& \mathbb{Z} &\underset{id}{\longrightarrow}& \cdots &\underset{id}{\longrightarrow}& \mathbb{Z} &\underset{id}{\longrightarrow}& \mathbb{Z} } \end{displaymath} Therefore by the second item of prop. \ref{PropertiesOfLim1} the long exact sequence from the first item of prop. \ref{PropertiesOfLim1} applied to the [[short exact sequence]] \begin{displaymath} 0 \to A_\bullet \overset{j^0}{\longrightarrow} J^0_\bullet \overset{j^1}{\longrightarrow} ker(j^2)_\bullet \to 0 \end{displaymath} becomes \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim} A_\bullet \overset{\underset{\longleftarrow}{\lim} j^0}{\longrightarrow} \underset{\longleftarrow}{\lim} J^0_\bullet \overset{\underset{\longleftarrow}{\lim}j^1}{\longrightarrow} \underset{\longleftarrow}{\lim}(ker(j^2)_\bullet) \longrightarrow \underset{\longleftarrow}{\lim}^1 A_\bullet \longrightarrow 0 \,. \end{displaymath} Exactness of this sequence gives the desired identification $\underset{\longleftarrow}{\lim}^1 A_\bullet \simeq (\underset{\longleftarrow}{\lim}(ker(j^2)_\bullet))/im(\underset{\longleftarrow}{\lim}(j^1)) \,.$ \end{proof} \begin{prop} \label{AbstractCharacterizationOfLim1}\hypertarget{AbstractCharacterizationOfLim1}{} The [[functor]] $\underset{\longleftarrow}{\lim}^1 \colon Ab^{(\mathbb{N}, \geq)} \longrightarrow Ab$ (def. \ref{Lim1ViaCokernel}) is in fact the unique functor, up to [[natural isomorphism]], satisfying the conditions in prop. \ref{AbstractCharacterizationOfLim1}. \end{prop} \begin{proof} The proof of prop. \ref{Lim1IsDerivedLimit} only used the conditions from prop. \ref{PropertiesOfLim1}, hence any functor satisfying these conditions is the first right derived functor of $\underset{\longleftarrow}{\lim}$, up to natural isomorphism. \end{proof} \hypertarget{vanishing_of_}{}\subsubsection*{{Vanishing of $\lim^1$}}\label{vanishing_of_} \begin{defn} \label{MittagLefflerCondition}\hypertarget{MittagLefflerCondition}{} A tower $A_\bullet$ of [[abelian groups]] \begin{displaymath} \cdots \to A_3 \to A_2 \to A_1 \to A_0 \end{displaymath} is said to satisfy the \textbf{[[Mittag-Leffler condition]]} if for all $k$ there exists $i \geq k$ such that for all $j \geq i \geq k$ the [[image]] of the [[homomorphism]] $A_i \to A_k$ equals that of $A_j \to A_k$ \begin{displaymath} im(A_i \to A_k) \simeq im(A_j \to A_k) \,. \end{displaymath} \end{defn} (e.g. \hyperlink{Switzer75}{Switzer 75, def. 7.74}) \begin{example} \label{MittagLefflerSatisfiedInParticularForTowerOfSurjections}\hypertarget{MittagLefflerSatisfiedInParticularForTowerOfSurjections}{} The Mittag-Leffler condition, def. \ref{MittagLefflerCondition}, is satisfied in particular when all morphisms $A_{i+1}\to A_i$ are [[epimorphisms]] (hence [[surjections]] of the underlying [[sets]]). \end{example} \begin{prop} \label{Lim1VanihesUnderMittagLeffler}\hypertarget{Lim1VanihesUnderMittagLeffler}{} If a tower $A_\bullet$ satisfies the [[Mittag-Leffler condition]], def. \ref{MittagLefflerCondition}, then its $\underset{\leftarrow}{\lim}^1$ vanishes: \begin{displaymath} \underset{\longleftarrow}{\lim}^1 A_\bullet = 0 \,. \end{displaymath} \end{prop} e.g. (\hyperlink{Switzer75}{Switzer 75, theorem 7.75}, \hyperlink{Kochmann96}{Kochmann 96, prop. 4.2.3}, \hyperlink{Weibel94}{Weibel 94, prop. 3.5.7}) \begin{proof} One needs to show that with the Mittag-Leffler condition, then the [[cokernel]] of $\partial$ in def. \ref{TheBoundaryMapDefiningLim1} vanishes, hence that $\partial$ is an [[epimorphism]] in this case, hence that every $(a_n)_{n \in \mathbb{N}} \in \underset{n}{\prod} A_n$ has a preimage under $\partial$. So use the Mittag-Leffler condition to find pre-images of $a_n$ by [[induction]] over $n$. \end{proof} \hypertarget{relation_to_groups}{}\subsubsection*{{Relation to $Ext$-groups}}\label{relation_to_groups} \begin{lemma} \label{lim1AndExt1}\hypertarget{lim1AndExt1}{} Given a [[cotower]] \begin{displaymath} A_\bullet = (A_0 \overset{f_0}{\to} A _1 \overset{f_1}{\to} A_2 \to \cdots) \end{displaymath} of [[abelian groups]], then for every abelian group $B \in Ab$ there is a [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_n Hom(A_n, B) \longrightarrow Ext^1( \underset{\longrightarrow}{\lim}_n A_n, B ) \longrightarrow \underset{\longleftarrow}{\lim}_n Ext^1( A_n, B) \to 0 \,, \end{displaymath} where $Hom(-,-)$ denotes the [[hom-object|hom-group]], $Ext^1(-,-)$ denotes the first [[Ext]]-group (and so $Hom(-,-) = Ext^0(-,-)$). \end{lemma} \begin{proof} Consider the homomorphism \begin{displaymath} \tilde \partial \;\colon\; \underset{n}{\oplus} A_n \longrightarrow \underset{n}{\oplus} A_n \end{displaymath} which sends $a_n \in A_n$ to $a_n - f_n(a_n)$. Its [[cokernel]] is the [[colimit]] over the cotower, but its [[kernel]] is trivial (in contrast to the otherwise [[formal dual|formally dual]] situation in remark \ref{LimitAsKernelAnalogousToLim1}). Hence (as opposed to the long exact sequence in def. \ref{Lim1ViaCokernel}) there is a [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{n}{\oplus} A_n \overset{\tilde \partial}{\longrightarrow} \underset{n}{\oplus} A_n \overset{}{\longrightarrow} \underset{\longrightarrow}{lim}_n A_n \to 0 \,. \end{displaymath} Every short exact sequence gives rise to a [[long exact sequence]] of [[derived functors]] (\href{derived+functor+in+homological+algebra#LongExactSequenceOfRightDerivedFunctorsFromShortExactSequence}{prop.}) which in the present case starts out as \begin{displaymath} 0 \to Hom(\underset{\longrightarrow}{\lim}_n A_n,B) \longrightarrow \underset{n}{\prod} Hom( A_n, B ) \overset{\partial}{\longrightarrow} \underset{n}{\prod} Hom( A_n, B ) \longrightarrow Ext^1(\underset{\longrightarrow}{\lim}_n A_n,B) \longrightarrow \underset{n}{\prod} Ext^1( A_n, B ) \overset{\partial}{\longrightarrow} \underset{n}{\prod} Ext^1( A_n, B ) \longrightarrow \cdots \end{displaymath} where we used that [[direct sum]] is the [[coproduct]] in abelian groups, so that homs out of it yield a [[product]], and where the morphism $\partial$ is the one from def. \ref{TheBoundaryMapDefiningLim1} corresponding to the [[tower]] \begin{displaymath} Hom(A_\bullet,B) = ( \cdots \to Hom(A_2,B) \to Hom(A_1,B) \to Hom(A_0,B) ) \,. \end{displaymath} Hence truncating this long sequence by forming kernel and cokernel of $\partial$, respectively, it becomes the short exact sequence in question. \end{proof} \hypertarget{MilnorSequences}{}\subsection*{{Milnor exact sequences}}\label{MilnorSequences} \hypertarget{for_homotopy_groups}{}\subsubsection*{{For homotopy groups}}\label{for_homotopy_groups} \begin{prop} \label{MilnorExactSequence}\hypertarget{MilnorExactSequence}{} \textbf{(Milnor exact sequence for homotopy groups)} Let \begin{displaymath} \cdots \to X_3 \overset{p_2}{\longrightarrow} X_2 \overset{p_1}{\longrightarrow} X_1 \overset{p_0}{\longrightarrow} X_0 \end{displaymath} be a [[tower of fibrations]], for instance a tower of [[simplicial sets]] with each map a [[Kan fibration]] (and $X_0$, hence each $X_n$ a [[Kan complex]]), or a tower of [[topological spaces]] with each map a [[Serre fibration]]. Then for each $q \in \mathbb{N}$ there is a [[short exact sequence]] \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_i \pi_{q+1}(X_i) \longrightarrow \pi_q(\underset{\longleftarrow}{\lim}_i X_i) \longrightarrow \underset{\longleftarrow}{\lim}_i \pi_q(X_i) \to 0 \,, \end{displaymath} for $\pi_\bullet$ the [[homotopy group]]-functor (exact as [[pointed sets]] for $i = 0$, as [[groups]] for $i \geq 1$) which says that \begin{enumerate}% \item the failure of the [[limit]] over the homotopy groups of the stages of the tower to equal the homotopy groups of the [[limit]] of the tower is at most in the [[kernel]] of the canonical comparison map; \item that kernel is the $\underset{\longleftarrow}{\lim}^1$ (def. \ref{Lim1ViaCokernel}) of the homotopy groups of the stages. \end{enumerate} \end{prop} e.g. (\hyperlink{BousfieldKan72}{Bousfield-Kan 72, chapter IX, theorem 3.1}, \hyperlink{GoerssJardine96}{Goerss-Jardine 96, section VI. prop. 2.15}) \begin{proof} With respect to the [[classical model structure on simplicial sets]] or the [[classical model structure on topological spaces]], a tower of fibrations as stated is a fibrant object in the injective [[model structure on functors]] $[(\mathbb{N},\geq), sSet]_{inj}$ ($[(\mathbb{N},\geq), Top]_{inj}$) (\href{projectively+cofibrant+diagram#CofibrantCotowerDiagram}{prop}). Hence the plain [[limit]] over this diagram represents the [[homotopy limit]]. By the discussion there, up to weak equivalence that homotopy limit is also the pullback in \begin{displaymath} \itexarray{ holim X_\bullet &\longrightarrow& \underset{n}{\prod} Path(X_n) \\ \downarrow &(pb)& \downarrow \\ \underset{n}{\prod} X_n &\underset{(id,p_n)_n}{\longrightarrow}& \underset{n}{\prod} X_ n \times X_n } \,, \end{displaymath} where on the right we have the product over all the canonical fibrations out of the [[path space objects]]. Hence also the left vertical morphism is a fibration, and so by taking its [[fiber]] over a basepoint, the [[pasting law]] gives a [[homotopy fiber sequence]] \begin{displaymath} \underset{n}{\prod} \Omega X_n \longrightarrow holim X_\bullet \longrightarrow \underset{n}{\prod} X_n \,. \end{displaymath} The [[long exact sequence of homotopy groups]] of this fiber sequence goes \begin{displaymath} \cdots \to \underset{n}{\prod} \pi_{q+1}(X_n) \longrightarrow \underset{n}{\prod} \pi_{q+1}(X_n) \longrightarrow \pi_q (\underset{\longleftarrow}{\lim} X_\bullet) \longrightarrow \underset{n}{\prod} \pi_q(X_n) \longrightarrow \underset{n}{\prod} \pi_q(X_n) \to \cdots \,. \end{displaymath} Chopping that off by forming kernel and cokernel yields the claim for positive $q$. For $q = 0$ it follows by inspection. \end{proof} \hypertarget{for_chain_homology}{}\subsubsection*{{For chain homology}}\label{for_chain_homology} \begin{example} \label{}\hypertarget{}{} Let \begin{displaymath} \cdots \to C_3 \to C_2 \to C_1 \to C_0 \end{displaymath} be a tower of [[chain complexes]] (of [[abelian groups]]) such that it satisfies degree-wise the [[Mittag-Leffler condition]], def. \ref{MittagLefflerCondition}, and write \begin{displaymath} C \coloneqq \underset{\longleftarrow}{\lim}_n C_n \end{displaymath} for its [[limit]]. Then for each $q \in \mathbb{Z}$ the [[chain homology]] $H_q(-)$ of the limit sits in a [[short exact sequence]] with the ordinary $\underset{\longleftarrow}{\lim}$ and the $\underset{\longleftarrow}{\lim}^1$ of the chain homologies: \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_i H_{q+1}(C_i) \longrightarrow H_q(C) \longrightarrow \underset{\longleftarrow}{\lim}_i H_q(C_i) \to 0 \,. \end{displaymath} \end{example} (e.g. \hyperlink{Weibel94}{Weibel 94, prop. 3.5.8}) \hypertarget{for_generalized_cohomology_groups}{}\subsubsection*{{For generalized cohomology groups}}\label{for_generalized_cohomology_groups} \hypertarget{of_spaces}{}\paragraph*{{Of spaces}}\label{of_spaces} \begin{prop} \label{MilorSequenceForReducedCohomologyOnCWComplex}\hypertarget{MilorSequenceForReducedCohomologyOnCWComplex}{} \textbf{(Milnor exact sequence for generalized cohomology)} Let $X$ be a [[pointed topological space|pointed]] [[CW-complex]], $X = \underset{\longrightarrow}{\lim}_n X_n$ and let $\tilde E^\bullet$ an additive [[reduced cohomology theory]]. Then the canonical morphisms make a [[short exact sequence]] \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_n \tilde E^{\bullet-1}(X_n) \longrightarrow \tilde E^{\bullet}(X) \longrightarrow \underset{\longleftarrow}{\lim}_n \tilde E^{\bullet}(X_n) \to 0 \,, \end{displaymath} saying that \begin{enumerate}% \item the failure of the canonical comparison map $\tilde E^\bullet(X) \to \underset{\longleftarrow}{\lim} \tilde E^\bullet(X_n)$ to the [[limit]] of the [[cohomology groups]] on the finite stages to be an [[isomorphism]] is at most in a non-vanishing [[kernel]]; \item this kernel is precisely the $\lim^1$ (def. \ref{Lim1ViaCokernel}) of the cohomology groups at the finite stages in one degree lower. \end{enumerate} \end{prop} e.g. (\hyperlink{Switzer75}{Switzer 75, prop. 7.66}, \hyperlink{Kochmann96}{Kochmann 96, prop. 4.2.2}) \begin{proof} For \begin{displaymath} X_\bullet = \left( X_0 \overset{i_0}{\hookrightarrow} X_1 \overset{i_1}{\hookrightarrow} X_2 \overset{i_1}{\hookrightarrow} \cdots \right) \end{displaymath} the sequence of stages of the ([[pointed topological space|pointed]]) [[CW-complex]] $X = \underset{\longleftarrow}{\lim}_n X_n$, write \begin{displaymath} \begin{aligned} A_X &\coloneqq \underset{n \in \mathbb{N}}{\sqcup} X_{2n} \times [2n,{2n}+1]; \\ B_X &\coloneqq \underset{n \in \mathbb{N}}{\sqcup} X_{(2n+1)} \times [2n+1,{2n}+2]. \end{aligned} \end{displaymath} for the [[disjoint unions]] of the [[cylinders]] over all the stages in even and all those in odd degree, respectively. These come with canonical inclusion maps into the [[mapping telescope]] $Tel(X_\bullet)$ (\href{mapping+telescope#MappingTelescope}{def.}), which we denote by \begin{displaymath} \itexarray{ A_X && && B_X \\ & {}_{\mathllap{\iota_{A_x}}}\searrow && \swarrow_{\mathrlap{\iota_{B_x}}} \\ && Tel(X_\bullet) } \,. \end{displaymath} Observe that \begin{enumerate}% \item $A_X \cup B_X \simeq Tel(X_\bullet)$; \item $A_X \cap B_X \simeq \underset{n \in \mathbb{N}}{\sqcup} X_n$; \end{enumerate} and that there are [[homotopy equivalences]] \begin{enumerate}% \item $A_X \simeq \underset{n \in \mathbb{N}}{\sqcup} X_{2n+1}$ \item $B_X \simeq \underset{n \in \mathbb{N}}{\sqcup} X_{2n}$ \item $Tel(X_\bullet) \simeq X$. \end{enumerate} The first two are obvious, the third is \href{mapping+telescope#TelescopeOfCWComplexEquivalentToTheOriginal}{this proposition}. This implies that the [[Mayer-Vietoris sequence]] (\href{generalized+cohomology#MayerVietorisSequenceInGeneralizedCohomology}{prop.}) for $\tilde E^\bullet$ on the cover $A \sqcup B \to X$ is isomorphic to the bottom horizontal sequence in the following diagram: \begin{displaymath} \itexarray{ \tilde E^{\bullet-1}(A_X)\oplus \tilde E^{\bullet-1}(B_X) &\longrightarrow& \tilde E^{\bullet-1}(A_X \cap B_X) &\longrightarrow& \tilde E^\bullet(X) &\overset{(\iota_{A_x})^\ast - (\iota_{B_x})^\ast}{\longrightarrow}& \tilde E^\bullet(A_X)\oplus \tilde E^\bullet(B_X) &\overset{}{\longrightarrow}& \tilde E^\bullet(A_X \cap B_X) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{=}} && {}^{\mathllap{(id, -id)}}\downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \underset{n}{\prod}\tilde E^{\bullet-1}(X_n) &\underset{\partial}{\longrightarrow}& \underset{n}{\prod}\tilde E^{\bullet-1}(X_n) &\longrightarrow& \tilde E^\bullet(X) &\overset{(i_n^\ast)_{n}}{\longrightarrow}& \underset{n}{\prod}\tilde E^\bullet(X_n) &\underset{\partial}{\longrightarrow}& \underset{n}{\prod}\tilde E^\bullet(X_n) } \,, \end{displaymath} hence that the bottom sequence is also a [[long exact sequence]]. To identify the morphism $\partial$, notice that it comes from pulling back $E$-cohomology classes along the inclusions $A \cap B \to A$ and $A\cap B \to B$. Comonentwise these are the inclusions of each $X_n$ into the left and the right end of its cylinder inside the [[mapping telescope]], respectively. By the construction of the [[mapping telescope]], one of these ends is embedded via $i_n \colon X_n \hookrightarrow X_{n+1}$ into the cylinder over $X_{n+1}$. In conclusion, $\partial$ acts by \begin{displaymath} \partial \;\colon\; (a_n)_{n \in \mathbb{N}} \mapsto ( a_n - i_n^\ast(a_{n+1}) ) \,. \end{displaymath} (The relative sign is the one in $(\iota_{A_x})^\ast - (\iota_{B_x})^\ast$ originating in the definition of the [[Mayer-Vietoris sequence]] and properly propagated to the bottom sequence while ensuring that $\tilde E^\bullet(X)\to \prod_n \tilde E^\bullet(X_n)$ is really $(i_n^\ast)_n$ and not $(-1)^n(i_n^\ast)_n$, as needed for the statement to be proven.) This is the morphism from def. \ref{TheBoundaryMapDefiningLim1} for the sequence \begin{displaymath} \cdots \to \tilde E^\bullet(X_{n+1}) \overset{i_n^\ast}{\longrightarrow} \tilde E^\bullet(X_n) \overset{i_n^\ast}{\longrightarrow} \tilde E^{\bullet}(X_{n-1}) \to \cdots \,. \end{displaymath} Hence truncating the above long exact sequence by forming kernel and cokernel of $\partial$, the result follows via remark \ref{LimitAsKernelAnalogousToLim1} and definition \ref{Lim1ViaCokernel}. \end{proof} In contrast: \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[pointed topological space|pointed]] [[CW-complex]], $X = \underset{\longrightarrow}{\lim}_n X_n$. For $\tilde E_\bullet$ an additive reduced [[generalized homology theory]], then \begin{displaymath} \underset{\longrightarrow}{\lim}_n \tilde E_\bullet(X_n) \overset{\simeq}{\longrightarrow} \tilde E_\bullet(X) \end{displaymath} is an [[isomorphism]]. \end{prop} (\hyperlink{Switzer75}{Switzer 75, prop. 7.53}) \hypertarget{ForGeneralizedCohomologyOfSpectra}{}\paragraph*{{Of spectra}}\label{ForGeneralizedCohomologyOfSpectra} For $X, E \in Ho(Spectra)$ two [[spectra]], then the $E$-generalized cohomology of $X$ is the graded group of homs in the [[stable homotopy category]] (\href{Introduction+to+Stable+homotopy+theory+--+1-1#GradedAbelianGroupStructureOnHomsInTheHomotopyCategory}{def.}, \href{Introduction+to+Stable+homotopy+theory+--+1-1#ForASpectrumXGeneralizedECohomology}{exmpl.}) \begin{displaymath} \begin{aligned} E^\bullet(X) & \coloneqq [X,E]_{-\bullet} \\ & \coloneqq [\Sigma^\bullet X, E] \end{aligned} \,. \end{displaymath} The [[stable homotopy category]] is, in particular, the [[homotopy category of a model category|homotopy category]] of the stable [[model structure on orthogonal spectra]], in that its [[localization]] at the [[stable weak homotopy equivalences]] is of the form \begin{displaymath} \gamma \;\colon\; OrthSpec(Top_{cg})_{stable} \longrightarrow Ho(Spectra) \,. \end{displaymath} In the following when considering an [[orthogonal spectrum]] $X \in OrthSpec(Top_{cg})$, we use, for brevity, the same symbol for its image under $\gamma$. \begin{prop} \label{CohomologyOfSpectraMilnorSequence}\hypertarget{CohomologyOfSpectraMilnorSequence}{} For $X, E \in OrthSpec(Top_{cg})$ two [[orthogonal spectra]] (or two [[symmetric spectra]] such that $X$ is a [[semistable symmetric spectrum]]) then there is a [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_n E^{\bullet + n -1}(X_{n}) \longrightarrow E^\bullet(X) \longrightarrow \underset{\longleftarrow}{\lim}_n E^{\bullet + n}(X_n) \to 0 \end{displaymath} where $\underset{\longleftarrow}{\lim}^1$ denotes the [[lim{\tt \symbol{94}}1]], and where this and the limit on the right are taken over the following structure morphisms \begin{displaymath} E^{\bullet + n + 1}(X_{n+1}) \overset{E^{\bullet+1n+1}(\Sigma^X_n)}{\longrightarrow} E^{\bullet+n+1}(X_n \wedge S^1) \overset{\simeq}{\longrightarrow} E^{\bullet + n}(X_n) \,. \end{displaymath} \end{prop} (\hyperlink{Schwede12}{Schwede 12, chapter II prop. 6.5 (ii)}) (using that symmetric spectra underlying orthogonal spectra are semistable (\hyperlink{Schwede12}{Schwede 12, p. 40})) \begin{cor} \label{WithSomeLefflerTheHomsOfSpectraAreHomotopicIfComponentsAre}\hypertarget{WithSomeLefflerTheHomsOfSpectraAreHomotopicIfComponentsAre}{} For $X,E \in Ho(Spectra)$ two [[spectra]] such that the tower $n \mapsto E^{n -1}(X_{n})$ satisfies the [[Mittag-Leffler condition]] (def. \ref{MittagLefflerCondition}), then two morphisms of spectra $X \longrightarrow E$ are homotopic already if all their morphisms of component spaces $X_n \to E_n$ are. \end{cor} \begin{proof} By prop. \ref{Lim1VanihesUnderMittagLeffler} the assumption implies that the $lim^1$-term in prop. \ref{CohomologyOfSpectraMilnorSequence} vanishes, hence by exactness it follows that in this case there is an [[isomorphism]] \begin{displaymath} [X,E] \simeq E^0(X) \overset{\simeq}{\longrightarrow} \underset{\longleftarrow}{\lim}_n [X_n, E_n] \,. \end{displaymath} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homotopy limit]] \item [[spectral sequence of a tower of fibrations]] \item [[conditional convergence]] (of [[spectral sequences]]) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Milnor]], \emph{On axiomatic homology theory}, Pacific J. Math. Volume 12, Number 1 (1962), 337-341 (\href{http://projecteuclid.org/euclid.pjm/1103036730}{Euclid}) \item Z. Z. Yeh, \emph{Higher Inverse Limits and Homology Theories}, Thesis, Princeton, 1959. \item [[Aldridge Bousfield]], [[Daniel Kan]], section IX.2 of \emph{Homotopy limits, completions and localization}, Springer 1972 \item [[Robert Switzer]], section 7 from def. 7.57 on in \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \item [[Charles Weibel]], section 3.5 of \emph{[[An Introduction to Homological Algebra]]}, Cambridge University Press (1994) \item [[Stanley Kochmann]], section 4.2 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Paul Goerss]], [[Rick Jardine]], section VI.2 of \emph{[[Simplicial homotopy theory]]}, Modern Birkh\"a{}user Classics (1999) (that's section VII.6 of the 1996 \emph{Progress of Mathematics} edition ) \end{itemize} For generalized cohomology of spectra \begin{itemize}% \item [[Stefan Schwede]], around prop.6.5 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} Discussion in the context of [[categories of fibrant objects]] is in \begin{itemize}% \item [[Kenneth Brown]], section 5 of \emph{[[Abstract Homotopy Theory and Generalized Sheaf Cohomology]]}, Transactions of the American Mathematical Society, Vol. 186 (1973), 419-458 \end{itemize} Discussion in the context of [[conditional convergence]] of [[spectral sequences]] is in \begin{itemize}% \item [[Michael Boardman]], section I.1 of \emph{Conditionally convergent spectral sequences}, 1999 (\href{http://www.uio.no/studier/emner/matnat/math/MAT9580/v12/undervisningsmateriale/boardman-conditionally-1999.pdf}{pdf}) \end{itemize} [[!redirects lim1]] [[!redirects lim{\tt \symbol{94}}1]] [[!redirects Milnor sequence]] [[!redirects Milnor sequences]] [[!redirects Milnor exact sequence]] [[!redirects Milnor exact sequences]] [[!redirects Milnor short exact sequence]] [[!redirects Milnor short exact sequences]] [[!redirects Milnor long exact sequence]] [[!redirects Milnor long exact sequences]] \end{document}