\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{linear equation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{equality_and_equivalence}{}\paragraph*{{Equality and Equivalence}}\label{equality_and_equivalence} [[!include equality and equivalence - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_1category_theory}{In 1-category theory}\dotfill \pageref*{in_1category_theory} \linebreak \noindent\hyperlink{in_category_theory}{In $(\infty,1)$-category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{solution_spaces_of_homogeneous_linear_equations}{Solution spaces of homogeneous $R$-linear equations}\dotfill \pageref*{solution_spaces_of_homogeneous_linear_equations} \linebreak \noindent\hyperlink{relation_to_syzygies_and_projective_resolutions_of_modules}{Relation to syzygies and projective resolutions of modules}\dotfill \pageref*{relation_to_syzygies_and_projective_resolutions_of_modules} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Since generally an \emph{[[equation]]} is the statement of [[equality]] $\phi(x) = \psi(y)$ of two [[functions]] $\phi$ and $\psi$ of [[variables]] $x$ and $y$, so a \emph{linear equation} is an equation between [[linear functions]]. \hypertarget{in_1category_theory}{}\subsubsection*{{In 1-category theory}}\label{in_1category_theory} Typically here a \emph{[[linear function]]} is taken to mean an \emph{$R$-[[linear map]]} over some given [[ring]] $R$, hence a [[homomorphism]] $\phi : X \to Z$ or $\psi : Y \to Z$ of $R$-[[modules]] $X, Y, Z \in R$[[Mod]]. If here $Z$ is an $R$-module of [[rank]] greater than 1, one also speaks of a \emph{system of linear equations}. Specifically if $R = k$ is a [[field]] then these are linear maps of $k$-[[vector spaces]] and hence in this case a linear equation is a statement of equality of two [[vectors]] $\phi(x) = \psi(y)$ in some [[vector space]] $Z$ that depend linearly on vectors $x$ in a vector spaces $X$ and $y \in Y$. Frequently this is considered specifically for the case that $g$ is a [[constant function]], hence just a fixed [[vector]]. In this case the linear equation becomes $\phi(x) = g$ for $x \in X$. If moreover $\phi$ here is represented or representable by a [[matrix]] this is typically written as \begin{displaymath} \phi \cdot\vec x = \vec g \,, \end{displaymath} which is the form that one finds in standard textbooks on [[linear algebra]]. If $\vec g = 0$ here this is called a \emph{homogeneous linear equation}. But linear equations make sense and are important in the greater generality where $R$ is not necessarily a field, and in fact in contexts more general than that of $R$-modules even. For instance [[natural isomorphisms]] between [[linear functors]] are a kind of [[categorification]] of linear equations. \hypertarget{in_category_theory}{}\subsubsection*{{In $(\infty,1)$-category theory}}\label{in_category_theory} Indeed, as discussed at \emph{[[equation]]}, in the [[formal logic]] of [[type theory]] a an equation as above is a [[judgement]] of the form \begin{displaymath} x : X , y : Y \vdash (\phi(x) = \psi(y)) : Type \end{displaymath} whose solution space is the [[dependent sum]] \begin{displaymath} Sol \;\; \coloneqq \vdash \sum_{{x : X} \atop {y : Y}} (\phi(x) = \psi(y)) : Type \end{displaymath} and reading this in fact in [[homotopy type theory]] says that $X, Y, Sol$ are \emph{[[homotopy types]]}. The generalization of a [[ring]] $R$ to a [[homotopy type]] is an \emph{[[E-∞-ring]]} and that of an $R$-[[module]] $X, Y$ is a \emph{[[module spectrum]]}. Accordingly a linear equation in [[homotopy]]([[homotopy type theory|type]]) [[homotopy theory]] is a statement of [[equivalence]] between elements of an $R$-[[module spectrum]] that depend $R$-linearly on other $R$-module spectra. More precisely, as discussed at \emph{[[equation]]}, the solution space to such an ``$\infty$-linear equation'' is the [[homotopy pullback]] \begin{displaymath} \itexarray{ X \times_Z^\infty Y &\to& Y \\ \downarrow &\swArrow& \downarrow^{\mathrlap{\psi}} \\ X &\underset{\phi}{\to}& Z } \end{displaymath} in an [[(∞,1)-category]] of $R$-[[∞-modules]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{solution_spaces_of_homogeneous_linear_equations}{}\subsubsection*{{Solution spaces of homogeneous $R$-linear equations}}\label{solution_spaces_of_homogeneous_linear_equations} We discuss solution space of homogeneous linear equations in the general context of [[linear algebra]] over a [[ring]] $R$ (not necessarily a [[field]]). So let $R$ be a [[ring]] and let $N \in R$[[Mod]] be an $R$-[[module]]. Let $n_0,n_1 \in \mathbb{N}$ and let $K = (K_{i j})$ be an an $n_0 \times n_1$ [[matrix]] with entries in $R$. By [[matrix multiplication]] this defines a [[linear function]] \begin{displaymath} K \cdot (-) : N^{n_0} \to N^{n_1} \,. \end{displaymath} which takes the element $\vec u = (u_1, \cdots, u_{n_0}) \in N^{n_0}$ to the element $K \cdot \vec u$ with \begin{displaymath} (K \cdot \vec u)_i = \sum_{j = 1}^{n_0} K_{i j}\cdot u_j \,. \end{displaymath} Consider dually the linear map \begin{displaymath} (-) \cdot K^T : R^{n_1} \to R^{n_0} \end{displaymath} on the [[free modules]] over $R$. Consider the [[quotient]] [[module]] of $R^{n_1}$ by the [[image]] of this map \begin{displaymath} R^{n_1}/ (R^{n_0} \cdot K^T) \,, \end{displaymath} hence the [[cokernel]] of the map, fitting in the [[exact sequence]] \begin{displaymath} R^{n_1} \stackrel{(-)\cdot K}{\to} R^{n_0} \to R^{n_1}/(R^{n_1}\cdot K^T) \to 0 \end{displaymath} Here the morphism on the left is also called the inclusion of the [[syzygies]] of the module on the right. Applying the [[left exact functor|left exact]] [[hom functor]] $Hom_{R Mod}(-,N)$ to this yields [[exact sequence]] \begin{displaymath} 0 \to Hom_{R Mod}(R^{n_1}/(R^{n_0}\cdot K^T), N) \to N^{n_0} \stackrel{K \cdot(-)}{\to} N^{n_1} \,. \end{displaymath} This identifies $Hom_{R Mod}(R^{n_1}/(R^{n_0}\cdot K), N)$ as the space of solutions of the \emph{homogeneous} linear [[equation]] $K \cdot \vec u = 0$. (\ldots{}) \hypertarget{relation_to_syzygies_and_projective_resolutions_of_modules}{}\subsubsection*{{Relation to syzygies and projective resolutions of modules}}\label{relation_to_syzygies_and_projective_resolutions_of_modules} For $R$ a [[ring]], there is close relation between \begin{enumerate}% \item $R$-linear equations in finitely many variables; \item [[generators and relations|finitely generated]] $R$-[[modules]]; \item [[syzygies]] in these $R$-modules \item and [[projective resolutions]] of these $R$-modules. \end{enumerate} These relations we discuss in the following. (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[differential equation]] \item [[matrix calculus]] \item [[determinant]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the context of [[syzygies]] and [[projective resolutions]] of modules is for instance in section 4.5 of \begin{itemize}% \item [[Pierre Schapira]], \emph{Categories and homological algebra}, lecture notes (2011) (\href{http://people.math.jussieu.fr/~schapira/lectnotes/HomAl.pdf}{pdf}) \end{itemize} [[!redirects linear equations]] \end{document}