\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{linearly independent subset} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{linearly_independent_subsets}{}\section*{{Linearly independent subsets}}\label{linearly_independent_subsets} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{concretely}{Concretely}\dotfill \pageref*{concretely} \linebreak \noindent\hyperlink{constructively}{Constructively}\dotfill \pageref*{constructively} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[concrete set|set]] of [[vector]]s is linearly dependent if one can be written as a [[linear combination]] of the others, and linearly independent otherwise. In the latter case, the vectors in the set form a [[basis of a vector space|basis]] of their [[linear span|span]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $K$ be a [[rig]], and let $V$ be a (left or right) [[module]] over $K$. (Often $K$ is a [[field]] so that $V$ is a [[vector space]], but this is unnecessary.) Let $S$ be a [[subset]] of the [[underlying set]] ${|V|}$ of $V$. \hypertarget{abstractly}{}\subsubsection*{{Abstractly}}\label{abstractly} By the [[adjunction]] between the underlying-set functor and the [[free functor]], the subset inclusion \begin{displaymath} i_S\colon S \to {|V|} \end{displaymath} corresponds to a [[homomorphism]] \begin{displaymath} \hat{i}_S\colon K[S] \to V . \end{displaymath} Although $i_S$ is (by hypothesis) a [[monomorphism]] in $Set$, $\hat{i}_S$ need not be a monomorphism in $K Mod$. \begin{defn} \label{}\hypertarget{}{} The subset $S$ is \textbf{linearly independent} if $\hat{i}_S$ is a monomorphism; otherwise, $S$ is \textbf{linearly dependent}. \end{defn} Conversely, if we start with an (abstract!) [[set]] $S$ and a monomorphism from $K[S]$ to $V$, then the corresponding [[function]] from $S$ to ${|V|}$ must be a monomorphism (because the underlying-set functor is [[faithful functor|faithful]]). Thus, our considering only subsets of ${|V|}$ loses no generality. \hypertarget{concretely}{}\subsubsection*{{Concretely}}\label{concretely} Given a [[linear combination]] \begin{displaymath} \sum_{i=1}^n a_i v_i , \end{displaymath} this may or may not equal the [[zero vector]] $0_V$. Of course, if every $a_i$ is the zero scalar $0_K$, then the sum must be $0_V$. \begin{defn} \label{}\hypertarget{}{} The subset $S$ is \textbf{linearly independent} if, conversely, for every finite subset $\{v_1, \ldots, v_n\} \subseteq S$, we have $a_i = 0_K$ for all $i$ whenever \begin{displaymath} \sum_{i=1}^n a_i v_i = 0_V ; \end{displaymath} otherwise, $S$ is \textbf{linearly dependent}. \end{defn} Observe that the empty set is linearly independent by a vacuous implication. \hypertarget{constructively}{}\subsubsection*{{Constructively}}\label{constructively} In [[constructive mathematics]], the definitions above of linear independence are all right (and still equivalent), but the definition of linear dependence as simply the [[negation]] of linear independence is unsatisfying. Furthermore, we sometimes want something stronger than mere linear independence. If $K$ is a [[Heyting field]], then the field structure defines a [[tight apartness relation]] $\ne$. Even if $K$ is not a field, we may still suppose that it is equipped with a tight apartness, or at least some [[inequality relation]] $\ne$. If we restrict attention to modules with a compatible inequality relation and homomorphisms that preserve this, then we also get an inequality relation $\ne$ on the [[hom-sets]] of the category $K Mod$. This allows us to define stronger notions of both linear dependence (which we take to be the default notion) and linear independence (to which we give a new name). \begin{defn} \label{}\hypertarget{}{} The subset $S$ is \textbf{linearly dependent} if $\hat{i}_S$ is non-monic in the strong sense that there exist [[generalised elements]] $f, g\colon A \to K[S]$ such that \begin{displaymath} A \overset{f}\underset{g}\rightrightarrows K[S] \to V \end{displaymath} are equal but $f \ne g$. Concretely, $S$ is \textbf{linearly dependent} if some linear combination \begin{displaymath} \sum_{i = 1}^n a_i v_i = 0_V \end{displaymath} but at least one $a_i \ne 0_K$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The subset $S$ is \textbf{linearly free} if $\hat{i}_S$ is a [[regular monomorphism]], or equivalently if it is monic in the strong sense that $f ; \hat{i}_S \ne g ; \hat{i}_S$ whenever $f \ne g$. Concretely, $S$ is \textbf{linearly free} if \begin{displaymath} \sum_{i = 1}^n a_i v_i \ne 0_V \end{displaymath} whenever at least one $a_i \ne 0_K$. \end{defn} Then we have the following implications (assuming that $\ne$ is tight, so that $a = b$ holds iff $a \ne b$ fails) but not (in general) their unstated converses: \begin{displaymath} LF \Rightarrow LI \Leftrightarrow \neg{LD} ; \end{displaymath} \begin{displaymath} \neg{LF} \Leftarrow \neg{LI} \Leftarrow LD . \end{displaymath} It may also be instructive to look at the logical structure of each condition: * $LI$: $\forall (a,v),\; \sum a v = 0 \;\Rightarrow\; \forall i,\; a_i = 0$; * $LD$: $\exists (a,v),\; \sum a v = 0 \;\wedge\; \exists i,\; a_i \ne 0$; * $LF$: $\forall (a,v),\; \sum a v \ne 0 \;\Leftarrow\; \exists i,\; a_i \ne 0$. [[!redirects linearly independent subset]] [[!redirects linearly independent set]] [[!redirects linearly independent]] [[!redirects linear independence]] [[!redirects linearly dependent subset]] [[!redirects linearly dependent set]] [[!redirects linearly dependent]] [[!redirects linear dependence]] [[!redirects linearly free subset]] [[!redirects linearly free set]] [[!redirects linearly free]] [[!redirects linear freedom]] [[!redirects linear freeness]] \end{document}