\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{lined topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{constructions_in_lined_toposes}{Constructions in lined toposes}\dotfill \pageref*{constructions_in_lined_toposes} \linebreak \noindent\hyperlink{path_objects}{Path objects}\dotfill \pageref*{path_objects} \linebreak \noindent\hyperlink{ContractibleObjects}{Contractible objects}\dotfill \pageref*{ContractibleObjects} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} A \textbf{lined topos} $(\mathcal{T}, R)$ is \begin{itemize}% \item a [[ringed topos]] $(\mathcal{T}, k)$ (usually with the [[internalization|internal]] [[ring]] object $(k,+,\cdot)$ assumed to be commutative) \item and equipped with a choice $(R,+,\cdot)$ of [[internalization|internal]] commutative [[algebra]] object $(R,+,\cdot)$ over $k$ -- the \textbf{line object}. \end{itemize} \end{udefn} \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} \begin{itemize}% \item A [[smooth topos]] is a lined topos where the line is required to be a smooth differentiable space with [[infinitesimal object|infinitesimal]] subspaces in a certain way. This is the basic type of object studied in [[synthetic differential geometry]]. \item A [[super smooth topos]] is a lined topos that is a [[smooth topos]] and in which the $k$-algebra structure on $R$ is refined to that of a $k$-[[superalgebra]]. \end{itemize} \hypertarget{constructions_in_lined_toposes}{}\subsection*{{Constructions in lined toposes}}\label{constructions_in_lined_toposes} \hypertarget{path_objects}{}\subsubsection*{{Path objects}}\label{path_objects} The line object $R$ in a lined topos $\mathcal{T}$ canonically has the structure of a [[interval object|cartesian interval object]]. As described there, this canonically induces \begin{itemize}% \item a [[cosimplicial object]] $\Delta_R : \Delta \to \mathcal{T}$ \item a functor $\Pi : \mathcal{T} \to S \mathcal{T}$ that sends each object in the topos to a [[simplicial object]] \begin{displaymath} X \mapsto X^{\Delta_R^\bullet} \end{displaymath} ( which may be interpreted as presenting the [[schreiber:path ∞-groupoid|path ∞-groupoid]] of $X$). \end{itemize} \hypertarget{ContractibleObjects}{}\subsubsection*{{Contractible objects}}\label{ContractibleObjects} The following terminology is sometimes useful. \begin{udefn} \textbf{(contractible object)} Let $(\mathcal{T} = Sh(C), R)$ be a lined [[Grothendieck topos]] with respect to a [[site]] $C$. Call an object $X \in \mathcal{T}$ \textbf{contractible} with respect to the [[interval object]] $R$, if the [[simplicial presheaf|simplicial sheaf]] $\Pi(X) = X^{\Delta_R^\bullet} : C^{op} \to$ [[SSet]] sends each object to a [[contractible space|contractible]] [[simplicial set]]. \end{udefn} \textbf{Examples} \begin{itemize}% \item \textbf{sheaves on topological spaces} Let $Top'$ be a [[small category|small]] version of the category of sufficiently nice [[topological space]]s, for instance connected [[CW complex]]es. The canonical line object in $Sh(Top)$ is ${*} \stackrel{0}{\to} [0,1] \stackrel{1}{\leftarrow} {*}$ the standard topological interval. For $X \in Top$, $\Pi(X) = X^{\Delta_R^\bullet}$ is the [[singular simplicial complex]] of $X$. This is contractible in the above sense precisely if $X$ is a [[contractible space]] in the standard sense. \item \textbf{sheaves on cartesian spaces} Let [[CartSp]] be the full subcategory of [[Diff]] on [[smooth manifold]]s of the form $\mathbb{R}^n$, for $n \in \mathbb{N}$. The canonical line object in $\mathcal{T} = Sh(CartSp)$ is the real line regarded as an [[interval object]] \begin{displaymath} R = ({*} \stackrel{0}{\to} \mathbb{R} \stackrel{1}{\leftarrow} {*}) \,. \end{displaymath} \begin{lemma} \label{}\hypertarget{}{} In the lined topos $(\mathcal{T} = Sh(CartSp), R = \mathbb{R})$ the [[representable functor|representable]] objects $\mathbb{R}^n$ are contractible with respect to $R$. \end{lemma} \begin{proof} This is not quite as entirely trivial as it may seem on first sight, but follows directly from the [[Tietze extension theorem]] for smooth manifolds: we check that for all $V \in$ [[CartSp]] every [[boundary of a simplex]] $\partial \Delta[k] \to \Pi(\mathbb{R}^n)(V)$ extends through $\partial \Delta[k] \hookrightarrow \Delta[k]$: by the \href{http://ncatlab.org/nlab/show/interval+object#FundGeomInftCat}{construction of the cosimplicial object} $\Delta_R : \Delta \to Sh(CartSp)$ we have that morphisms $\partial \Delta[k] \to \Pi(\mathbb{R}^n)(V)$ correspond to smooth maps from the boundary of a $V$-cylinder over the standard $k$-simplex in $\mathbb{R}^k \times V \to \mathbb{R}^n$. Since this is a closed subset of $\mathbb{R}^k \times V$, by the [[Tietze extension theorem]] these maps extend (apply the theorem to each of their components) to all of $\mathbb{R}^k \times V$, hence in particular to the standard $k$-simplex inside $\mathbb{R}^k$ defined by the interval object. This constitutes the required extension to a $V$-family of $k$-simplices in $\mathbb{R}^n$ \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& (\mathbb{R}^n)^{\Delta_R^\bullet}(V) \\ \downarrow & \nearrow \\ \Delta[n] } \,. \end{displaymath} \end{proof} \item \textbf{sheaves on cartesian smooth loci} A small variation of the above example leads to [[smooth topos]]es with contractible representables: let $CartSp_{synth} \subset \mathbb{L}$ be the full [[subcategory]] of [[smooth loci]] on those smooth loci of the form $\mathbb{R}^n \times D_k(r)$, where $D_k(r)$ is the [[infinitesimal space]] of $k$th order infinitesimal neighbours of the origin in $\mathbb{R}^r$. The line object is again ${*} \stackrel{0}{\to} \mathbb{R} \stackrel{1}{\leftarrow} {*}$ as in the above example. Crucially, the [[infinitesimal space]]s $D_k(r)$ all have a unique point ${*} \to D_k(r)$. Accordingly, there is also a unique morphism $R^n \to D_k(r)$ for all $n$. It follows that simplices in $R^n \times D_k(r)$ are simplices in $R^n$ as above, and trivial as maps to the $D_k(r)$-factor. Hence the above argument carries over to this case and shows that all the $\mathbb{R}^n \times D_k(r)$ are contractible. \end{itemize} \end{document}