\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{local BRST cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[Lagrangian field theory]] $(E,\mathbf{L})$ with [[field bundle]] $E \overset{fb}{\to} \Sigma$ over some [[spacetime]] $\Sigma$ and [[local Lagrangian density]] $\mathbf{L}$, then its \emph{local BV-BRST complex} (or \emph{local BRST complex}, for short) is the realization of the [[BV-BRST complex]] not on [[local observables]] $A = \tau_{\Sigma} \alpha$ given by [[functionals]] on the [[space of field histories]] $\Gamma_{\Sigma}(E)_{\delta_{EL} = 0}$ which are [[transgression of variational differential forms|transgressions]] $\tau_{\Sigma}$ of [[variational differential forms]] $\alpha \in \Omega^{\bullet, \bullet}_\Sigma(E)$ on the jet bundle, but on these variational differential forms themselves (whence ``local'', i.e. before [[transgression of variational differential forms|transgression]]). If $s$ denotes the [[BV-BRST differential]] in a BV-resolution $\Omega^{\bullet,\bullet}_\Sigma(E)\vert_{\mathcal{E}_{BV}}$ of the restriction to the [[shell]] $\mathcal{E} \hookrightarrow J^\infty_\Sigma(E)$ of the [[variational bicomplex]] $\Omega^{\bullet,\bullet}_\Sigma(E)$ with its [[total spacetime derivative]] $d$ (horizontal derivative), then the \emph{local BV-BRST cohomology} is the [[cochain cohomology]] of $s + d$, hence of the [[total complex]] of the [[double complex]] given by $s$ and $d$. Generally, considering [[variational differential forms]] up to $d$-exact terms is the ``local'' incarnation of what under the [[integration of differential forms|integration]] involved in the [[transgression of variational differential forms|transgression]] is [[integration by parts]] and it is in this way that ``local BV-BRST cohomology'' knows about the actual BV-BRST cohomology on [[local observables]]. \hypertarget{example}{}\subsection*{{Example}}\label{example} Consider local coordinates $(\phi^a)$ on the [[fibers]] of the [[field bundle]]. The corresponding [[antifield]] coordinates are to be denoted $\overline{\phi}_a$ and the [[BV-BRST differential]] takes them to the corresponding component \begin{displaymath} s(\overline{\phi}_a) = \frac{\delta_{El} L}{\delta \phi^a} \end{displaymath} of the [[Euler-Lagrange form]]. In degree $(p+1,0)$ the $s+d$-closed elements in vanishing [[ghost]] degree are [[pairs]] $(v,J_v)$ consisting of an [[infinitesimal symmetry of the Lagrangian]] $v$, regarded as an [[antifield]] [[density]] $v^a \overline{\phi}_a dvol_\Sigma$, together with a corresponding [[conserved current|conserved]] [[Noether's theorem|Noether current]] $J_v$: \begin{displaymath} \itexarray{ \{J_v\} &\overset{d}{\longrightarrow}& \{ \overset{= 0}{\overbrace{ d J_v - \iota_v \delta_{EL}\mathbf{L} }} \} \\ && \uparrow\mathrlap{-s} \\ && \{ v^a \overline{\phi}_a dvol_\Sigma\} } \end{displaymath} Such pairs are $(s+d)$-exact if [[on-shell]] the infintiesimal symmetry coincides with an [[infinitesimal gauge symmetry]]. To see this, recall: An [[infinitesimal gauge symmetry]] $v_\epsilon$ of [[gauge parameter]] $(\epsilon^\alpha)$ is a vector field on the jet bundle with components of the form \begin{displaymath} \mathcal{L}_{v_\epsilon} \phi^a \;\coloneqq\; R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu} \end{displaymath} such that this is an [[infinitesimal symmetry of the Lagrangian]] in that \begin{displaymath} \begin{aligned} \iota_{v_\epsilon} \delta_{EL} \mathbf{L} & = v^a \frac{\delta_{EL} L}{\delta \phi^a} dvol_\Sigma \\ & = \epsilon^\alpha \left( R^a_\alpha \frac{\delta_{EL} L}{ \delta \phi^a} - \frac{d}{d x^\mu} \left( R^{a \mu}_\alpha \frac{\delta_{EL} L}{\delta \phi^a} \right) \right) dvol_\Sigma + d\left( \epsilon^\alpha R^{a \mu}_\alpha \frac{\delta_{EL} L}{\delta \phi^a} \right) \iota_{\partial_\mu} dvol_\Sigma \\ & = 0 + d(...) \end{aligned} \end{displaymath} for all $(\epsilon^\alpha)$. The corresponding [[antighosts]] $\overline{c}_\alpha$ are taken by the BV-BRST differential to the antifield-preimage of the term on the left: \begin{displaymath} s\left(\overline{c}_\alpha\right) \;=\; R^a_\alpha \overline{\phi}_a - \frac{d}{d x^\mu} \left( R^{a \mu}_\alpha \overline{\phi}_a \right) \,. \end{displaymath} Moreover, an [[on-shell]] vanishing [[infinitesimal symmetry of the Lagrangian]] is a vector field with components of the form \begin{displaymath} \kappa^{a b} \frac{\delta_{EL} L}{\delta \phi^a} \end{displaymath} for $\kappa^{a b} = - \kappa^{b a}$ a skew-symmetric system of smooth functions on the jet bundle. The linear combination of such an infinitesimal gauge symmetry and an on-shell vanishing infinitesimal symmetry is $(s+d)$-exact: \begin{displaymath} \begin{aligned} v^a dvol_\Sigma & = \left( R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu} + \kappa^{a b} \frac{\delta_{EL} L }{ \delta \phi^a } \right) dvol_\Sigma \\ & = s \left( \epsilon^\alpha \overline{c}_\alpha - \tfrac{1}{2}\kappa^{a b} \overline{\phi}_a \overline{\phi}_b \right) dvol_\sigma + d\left( \epsilon^\alpha R^{a \mu}_\alpha \right) \iota_{\partial_\mu} dvol_\Sigma \end{aligned} \end{displaymath} (\hyperlink{BarnichBrandtHenneaux94}{Barnich-Brandt-Henneaux 94, p. 20}) It may be useful to organize this expression into the $s+d$-[[bicomplex]] like so: \begin{displaymath} \itexarray{ \{K\} &\overset{d}{\longrightarrow}& \{ d K + \epsilon^\alpha R^{a \mu}_\alpha \frac{\delta_{EL}\mathbf{L}}{ \delta \phi^a} \} &\overset{d}{\longrightarrow}& \{ \overset{= 0}{\overbrace{ d J_v - \iota_v \delta_{EL}\mathbf{L} }} \} \\ && \mathllap{s}\uparrow && \uparrow\mathrlap{-s} \\ && \epsilon^\alpha R^{a \mu}_\alpha \overline{\phi}_a \iota_{\partial_\mu} dvol_\Sigma &\underset{d}{\longrightarrow}& \left\{ d\left( \epsilon^\alpha R^{a \mu}_\alpha \overline{\phi}_a \right) \iota_{\partial_\mu} dvol_\Sigma + \left( R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu} + \kappa^{a b} \frac{\delta_{EL} L }{ \delta \phi^a } \right) \overline{\phi}_a \, dvol_\Sigma \right\} \\ && && \uparrow\mathrlap{-s} \\ && && \left( - \epsilon^\alpha \overline{c}_\alpha + \tfrac{1}{2}\kappa^{a b } \overline{\phi}_a \overline{\phi}_b \right) dvol_\Sigma } \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[variational BV-BRST bicomplex]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Review includes \begin{itemize}% \item [[Glenn Barnich]], [[Friedemann Brandt]], [[Marc Henneaux]], \emph{Local BRST cohomology in gauge theories}, Phys. Rept. 338:439-569, 2000 (\href{https://arxiv.org/abs/hep-th/0002245}{arXiv:hep-th/0002245}) \end{itemize} The general theory is discussed in \begin{itemize}% \item [[Glenn Barnich]], [[Friedemann Brandt]], [[Marc Henneaux]], \emph{Local BRST cohomology in the antifield formalism: I. General theorems}, Commun.Math.Phys.174:57-92,1995 (\href{https://arxiv.org/abs/hep-th/9405109}{arXiv:hep-th/9405109}) \end{itemize} Details of the [[local antibracket]] are discussed in \begin{itemize}% \item [[Glenn Barnich]], [[Marc Henneaux]], section 2 and appendix B of \emph{Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket}, J. Math. Phys. 37 (1996) 5273-5296 (\href{https://arxiv.org/abs/hep-th/9601124}{arXiv:hep-th/9601124}) \end{itemize} Application to [[gravity]] and/or [[Yang-Mills theory]] ([[Einstein-Yang-Mills theory]]) is discussed in \begin{itemize}% \item [[Glenn Barnich]], [[Friedemann Brandt]], [[Marc Henneaux]], \emph{Local BRST cohomology in Einstein--Yang--Mills theory}, Nucl.Phys. B455 (1995) 357-408 (\href{https://arxiv.org/abs/hep-th/9505173}{arXiv:hep-th/9505173}) \end{itemize} [[!redirects local BV-BRST cohomology]] [[!redirects local BRST complex]] [[!redirects local BRST complexes]] [[!redirects local BV-BRST complex]] [[!redirects local BV-BRST complexes]] [[!redirects local BV complex]] [[!redirects local BV complexes]] [[!redirects local BV-complex]] [[!redirects local BV-complexes]] [[!redirects local BRST differential]] [[!redirects local BRST differentials]] [[!redirects local BV-BRST differential]] [[!redirects local BV-BRST differentials]] [[!redirects local BV-cohomology]] [[!redirects local BV cohomology]] \end{document}