\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{local epimorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToSieves}{Relation to sieves}\dotfill \pageref*{RelationToSieves} \linebreak \noindent\hyperlink{relation_to_simplicial_presheaves}{Relation to simplicial presheaves}\dotfill \pageref*{relation_to_simplicial_presheaves} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[site]] $\mathcal{S}$, then a \emph{local epimorphism} is a [[morphism]] in the [[category of presheaves]] over the site which becomes an [[epimorphism]] under [[sheafification]]. More abstractly, for $\mathcal{S}$ a [[small category]], one says axiomatically that a system of \emph{local epimorphisms} is a system of [[morphisms]] in the [[presheaf]] category $[S^{op}, Set]$ that has the closure properties expected of [[epimorphisms]] under [[composition]] and under [[pullback]]. There is then a unique [[Grothendieck topology]] on $\mathcal{S}$ that induces this system of local epimorphism, see \emph{\hyperlink{RelationToSieves}{Relation to sieves}} below. Moreover the [[local isomorphisms]] among the local epimorphisms admit a [[calculus of fractions]] which equips the [[category of presheaves]] with the structure of a [[category with weak equivalences]]. The corresponding [[reflective localization]] is the [[category of sheaves]] on the site $\mathcal{S}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SystemOfLocalEpimorphisms}\hypertarget{SystemOfLocalEpimorphisms}{} \textbf{(system of local epimorphisms)} Let $\mathcal{S}$ be a [[small category]]. A \emph{system of local epimorphisms} on the [[presheaf category]] $[\mathcal{S}^{op}, Set]$ is a [[class]] of [[morphisms]] satisfying the following axioms: \textbf{LE1} every [[epimorphism]] in $[\mathcal{S}^{op}, Set]$ is a local epimorphism; \textbf{LE2} the [[composition|composite]] of two local epimorphisms is a local epimorphism; \textbf{LE3} if the [[composition|composite]] $A_1 \stackrel{u}{\to} A_2 \stackrel{v}{\to} A_3$ is a local epimorphism, then so is $v$; \textbf{LE4} a morphism $u \colon A \to B$ is a local epimorphism precisely if for all $U \in \mathcal{S}$ (regarded as a [[representable presheaf]]) and morphisms $y: U \to B$, the [[pullback]] morphism $A \times_B U \to U$ is a local epimorphism. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToSieves}{}\subsubsection*{{Relation to sieves}}\label{RelationToSieves} The specification of a system of local epimorphisms is equivalent to a system of [[Grothendieck topology|Grothendieck covering]] [[sieves]]. To see this, translate between local epimorphisms to sieves as follows. Throughout, let $\mathcal{S}$ be a [[small category]]. Write $[\mathcal{S}^{op}, Set]$ for its [[category of presheaves]] and write \begin{displaymath} y \;\colon\; \mathcal{S} \longrightarrow [\mathcal{S}^{op}, Set] \end{displaymath} for the [[Yoneda embedding]]. \begin{defn} \label{LocalEpimorphismFromGrothendieckTopology}\hypertarget{LocalEpimorphismFromGrothendieckTopology}{} \textbf{(local epimorphisms from [[Grothendieck topology]])} Let the [[small category]] $\mathcal{C}$ be equipped with a [[Grothendieck topology]]. For $U \in \mathcal{S}$ an object in the site, a [[morphism]] of [[presheaves]] into the corresponding [[representable presheaf|represented presheaf]] \begin{displaymath} A \overset{f}{\longrightarrow} y(U) \;\;\; \in [\mathcal{S}^{op}, Set] \end{displaymath} is a \emph{local epimorphism} if the [[sieve]] \begin{displaymath} sieve_A \subset y(U) \in [S^{op}, Set] \end{displaymath} at $U$ which assigns to $V$ all morphisms from $V$ to $U$ that factor through $f$ \begin{displaymath} sieve_f \;\colon\; V \;\mapsto\; \left\{ V \overset{g}{\to} U \,\in \mathcal{S} \;\Big\vert\; \itexarray{ && A \\ & {}^{\mathllap{\exists}}\nearrow & \Big\downarrow{}^{f} \\ y(V) & \underset{y(g)}{\longrightarrow} & y(U) } \right\} \end{displaymath} is a [[covering sieve]]. A general morphism of presheaves \begin{displaymath} A \overset{}{\longrightarrow} B \;\;\; \in [\mathcal{S}^{op}, A] \end{displaymath} is a \emph{local epimorphism} if for every $U \in \mathcal{S}$ and every $y(U) \to B$ the [[projection]] morphism $y(U) \times_{B} A \overset{p_1}{\to} y(V)$ out of the [[pullback]]/[[fiber product]] \begin{displaymath} \itexarray{ y(U)\times_{B} A &\overset{}{\longrightarrow}& A \\ {}^{\mathllap{p_1}}\Big\downarrow &{}^{(pb)}& \Big\downarrow{}^{\mathrlap{f}} \\ y(U) &\underset{}{\longrightarrow}& B } \end{displaymath} is a local epimorphism as above. By the [[universal property]] of the [[fiber product]], this means equivalently that \begin{displaymath} sieve_f \;\colon\; V \;\mapsto\; \left\{ V \overset{g}{\to} U \,\in \mathcal{S} \;\Big\vert\; \itexarray{ y(V) &\overset{\exists}{\longrightarrow}& A \\ {}^{\mathllap{g}}\Big\downarrow & & \Big\downarrow{}^{f} \\ y(U) & \underset{}{\longrightarrow} & B } \right\} \end{displaymath} is a [[covering sieve]]. \end{defn} \begin{remark} \label{InTermsOfCoverages}\hypertarget{InTermsOfCoverages}{} \textbf{(in terms of [[coverages]])} If instead of a [[Grothendieck topology]] we are just given a [[coverage]], then Def. \ref{LocalEpimorphismFromGrothendieckTopology} becomes: \begin{displaymath} A \overset{f}{\longrightarrow} B \;\;\; \in [\mathcal{S}^{op}, Set] \end{displaymath} is a local epimorphism, if for all $y(U) \longrightarrow B$ there is a [[covering]] $\{ V_i \overset{\iota_i}{\longrightarrow} U \}$ in the coverage, such that for each $i$ there exists a lift \begin{displaymath} \itexarray{ y(V_i) &\overset{\exists}{\longrightarrow}& A \\ {}^{\mathllap{\iota_i}}\Big\downarrow & & \Big\downarrow{}^{f} \\ y(U) & \underset{}{\longrightarrow} & B } \end{displaymath} \end{remark} \begin{defn} \label{GrothendieckTopologyFromLocalEpimorphisms}\hypertarget{GrothendieckTopologyFromLocalEpimorphisms}{} \textbf{(Grothendieck topology from local epimorphisms)} Conversely, assume a system of local epimorphisms as in Def. \ref{SystemOfLocalEpimorphisms} is given. Declare a [[sieve]] $F$ at $U$ to be a [[covering sieve]] precisely if the inclusion morphism $F \hookrightarrow U$ is a local epimorphism. Then this defines a [[Grothendieck topology]] encoded by the collection of local epimorphisms. \end{defn} \hypertarget{relation_to_simplicial_presheaves}{}\subsubsection*{{Relation to simplicial presheaves}}\label{relation_to_simplicial_presheaves} \begin{prop} \label{CechNerveProjectionOfLocalEpimorphismIsLocalWeakEquivalence}\hypertarget{CechNerveProjectionOfLocalEpimorphismIsLocalWeakEquivalence}{} \textbf{([[Cech nerve]] [[projection]] of [[local epimorphism]] is [[local weak equivalence]])} For $\mathcal{S}$ a [[site]], let \begin{displaymath} A \overset{f}{\longrightarrow} B \;\colon\; [\mathcal{S}^{op}, Set] \end{displaymath} be a local epimorphism (Def. \ref{LocalEpimorphismFromGrothendieckTopology}). Then the projection \begin{displaymath} C(f) \longrightarrow B \;\;\;\; \in [\mathcal{S}^{op}, sSet] \end{displaymath} out of the [[Cech nerve]] [[simplicial presheaf]] \begin{displaymath} C(f)_k \;\coloneqq\; \underset{ k \; \text{factors} }{ \underbrace{ A \times_B \cdots \times_B A }} \end{displaymath} is a [[weak equivalence]] in the projective local [[model structure on simplicial presheaves]] $[\mathcal{S}^{op}, sSet_{Qu}]_{proj,loc}$. \end{prop} (\hyperlink{DuggerHollanderIsaksen02}{Dugger-Hollander-Isaksen 02, corollary A.3}) $\,$ \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Kashiwara-Schapira, section 16 of \emph{[[Categories and Sheaves]]} \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], chapter III, section 8 of \emph{[[Sheaves in Geometry and Logic]], Springer 1992} \item [[Daniel Dugger]], [[Sharon Hollander]], [[Daniel Isaksen]], \emph{Hypercovers and simplicial presheaves}, Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 136. No. 1. Cambridge University Press, 2004 (\href{https://arxiv.org/abs/math/0205027}{arXiv:math/0205027}) \end{itemize} [[!redirects local epimorphisms]] [[!redirects local epi]] [[!redirects local epis]] [[!redirects generalized cover]] [[!redirects generalized covers]] \end{document}