\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{local isomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{axioms}{Axioms}\dotfill \pageref*{axioms} \linebreak \noindent\hyperlink{relation_to_grothendieck_topologies}{Relation to Grothendieck topologies}\dotfill \pageref*{relation_to_grothendieck_topologies} \linebreak \noindent\hyperlink{local_epimorphisms_from_local_isomorphisms}{Local epimorphisms from local isomorphisms}\dotfill \pageref*{local_epimorphisms_from_local_isomorphisms} \linebreak \noindent\hyperlink{local_isomorphisms_from_local_epimorphisms}{Local isomorphisms from local epimorphisms}\dotfill \pageref*{local_isomorphisms_from_local_epimorphisms} \linebreak \noindent\hyperlink{relation_to_lawveretierney_topologies}{Relation to Lawvere-Tierney topologies}\dotfill \pageref*{relation_to_lawveretierney_topologies} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{sheafification}{Sheafification}\dotfill \pageref*{sheafification} \linebreak \noindent\hyperlink{characterization_and_relation_to_sieves}{Characterization and relation to sieves}\dotfill \pageref*{characterization_and_relation_to_sieves} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{local isomorphism} in a [[presheaf]] category $PSh(S)$ is a morphism that becomes an [[isomorphism]] after passing to [[sheaf|sheaves]] with respect to a given [[Grothendieck topology]] on $S$. The collection of all local isomorphisms not only determines the [[Grothendieck topology]] but is precisely the collection of morphisms that are inverted when passing to sheaves. Hence local isomorphisms serve to understand [[sheaf|sheaves]] and [[sheafification]] in terms of the passage to a [[homotopy category]] of $PSh(S)$. This is a particular case of the notion of [[reflective factorization system]], applied to the sheafification reflector. It is discussed in more detail at [[category of sheaves]]: In terms of the discussion at [[geometric embedding]], local isomorphisms in $PSh(S)$ are precisely the [[calculus of fractions|multiplicative system]] $W$ that is sent to isomorphisms by the [[sheafification]] functor \begin{displaymath} \bar{(-)} : PSh(S) \to Sh(S) \end{displaymath} which is left [[exact functor|exact]] [[left adjoint]] to the [[full and faithful functor|full and faithful]] inclusion \begin{displaymath} Sh(S) \hookrightarrow PSh(S) \,. \end{displaymath} \hypertarget{axioms}{}\subsection*{{Axioms}}\label{axioms} A system of \textbf{local isomorphism}s on $PSh(S)$ is any collection of morphisms satisfying \begin{enumerate}% \item local isomorphisms are a system of [[category with weak equivalences|weak equivalences]] (i.e. every [[isomorphism]] is a local isomorphism and they satisfy [[2-out-of-3]]); \item a morphism $Y\to X$ is a local isomorphism if and only if its [[pullback]] \begin{displaymath} \itexarray{ U \times_X Y &\to& Y \\ {}^{\mathllap{loc iso}}\downarrow && \downarrow^{\mathrlap{\Leftrightarrow loc iso}} \\ U &\to& X } \end{displaymath} along any morphism $U \to X$, where $U$ is [[representable presheaf|representable]], is a local isomorphism. \end{enumerate} \hypertarget{relation_to_grothendieck_topologies}{}\subsection*{{Relation to Grothendieck topologies}}\label{relation_to_grothendieck_topologies} Systems of local isomorphisms on $PSh(S)$ are equivalent to [[Grothendieck topology|Grothendieck topologies]] on $S$. The following indicates how choices of systems of local isomorphisms are equivalent to choices of systems of [[local epimorphisms]]. The claim follows by the discussion at [[local epimorphism]]. \hypertarget{local_epimorphisms_from_local_isomorphisms}{}\subsubsection*{{Local epimorphisms from local isomorphisms}}\label{local_epimorphisms_from_local_isomorphisms} A system of [[local epimorphisms]] is defined from a system of local isomorphisms by declaring that $f : Y \to X$ is a [[local epimorphism]] precisely if $im(f) \to X$ is a local isomorphism. \hypertarget{local_isomorphisms_from_local_epimorphisms}{}\subsubsection*{{Local isomorphisms from local epimorphisms}}\label{local_isomorphisms_from_local_epimorphisms} Given a [[Grothendieck topology]] in terms of a system of [[local epimorphisms]], a system of local isomorphisms is constructed as follows. A \textbf{local monomorphism} with respect to this topology is a morphism $f : A \to B$ in $[S^{op}, Set]$ such that the canonical morphism $A \to A \times_B A$ is a [[local epimorphism]]. A \textbf{local isomorphism} with respect to a Grothendieck topology is a morphism in $[S^{op}, Set]$ that is both a [[local epimorphism]] as well as a local monomorphism in the above sense. \hypertarget{relation_to_lawveretierney_topologies}{}\subsection*{{Relation to Lawvere-Tierney topologies}}\label{relation_to_lawveretierney_topologies} Recall that [[Grothendieck topology|Grothendieck topologies]] on a [[small category]] $S$ are in bijection with [[Lawvere-Tierney topology|Lawvere-Tierney-topologies]] on $PSh(S)$ and that [[sheafification]] with respect to a [[Lawvere-Tierney topology]] is encoded in terms of monomorphisms in $PSh(S)$ which are \emph{[[dense monomorphism|dense]]} with respect to the [[Lawvere-Tierney topology]]. We have: the [[dense monomorphisms]] are precisely the local isomorphisms which are also ordinary [[monomorphisms]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item Local isomorphisms admit a left saturated [[calculus of fractions]]. \end{itemize} \hypertarget{sheafification}{}\subsubsection*{{Sheafification}}\label{sheafification} The [[sheafification]] functor which sends a [[presheaf]] $F$ to its weakly equivalent [[sheaf]] $\bar F$ can be realized using a [[colimit]] over local isomorphisms. See there. \hypertarget{characterization_and_relation_to_sieves}{}\subsubsection*{{Characterization and relation to sieves}}\label{characterization_and_relation_to_sieves} Often one concentrates on the local isomorphisms whose codomain is a [[representable functor|representable presheaf]], i.e. those of the form \begin{displaymath} A \to Y(U) \,, \end{displaymath} where $U$ is an object in $S$ and $Y$ is the [[Yoneda embedding]]. These come from covering [[sieves]] of a [[Grothendieck topology]] on $S$: for $U \in S$ and $\{V_i \to U\}_i$ a covering [[sieve]] on $U$, the coresponding local isomorphism is the presheaf which is the [[image]] of the joint injection map \begin{displaymath} \sqcup_i Y(V_i) \to Y(U) \,. \end{displaymath} Using the fact that morphisms in a presheaf category are [[strict morphisms]], so that [[image]] and [[coimage]] coincide, it is useful, with an eye towards generalizations from [[sheaves]] to [[stacks]] and [[∞-stacks]] (see in particular [[descent for simplicial presheaves]]), to say this equivalently in terms of the [[coimage]]: the local isomorphism corresponding to the covering [[sieve]] $\{V_i \to U\}$ is \begin{displaymath} colim ( (\sqcup_i Y(V_i))\times_{Y(U)} (\sqcup_i Y(V_i)) \stackrel{\to}{\to} (\sqcup_i Y(V_i)) ) \to Y(U) \end{displaymath} Notice that in general these are not \emph{all} the local isomorphism with representable codomain (more generally these are [[hypercovers]], where $(\sqcup_i Y(V_i))\times_{Y(U)} (\sqcup_i Y(V_i))$ is replaced in turn by one of its covers). (\ldots{}) Notice that local isomorphism with codomain a representable already induce general local isomorphisms using the fact that every presheaf is a colimit of representables (the [[co-Yoneda lemma]]) and that local isomorphisms/sieves are stable under [[pullback]]: \begin{uprop} If $A \in PSh(S)$ is a [[local object]] with respect to local isomorphisms whose codomain is a representable, then every morphism $X \to Y$ of presheaves such that for every representble $U$ and every morphism $U \to Y$ the pullback $X \times_Y U \to U$ is a local isomorphism, the canonical morphism \begin{displaymath} Hom(Y,A) \to Hom(X,A) \end{displaymath} is an isomorphism. \end{uprop} \begin{proof} We may first rewrite trivially \begin{displaymath} X \simeq X \times_Y Y \end{displaymath} and then use the [[co-Yoneda lemma]] to write (suppressing notationally the Yoneda embedding) \begin{displaymath} Y \simeq colim_{U \to Y} U \end{displaymath} and hence rewrite $(X \to Y)$ as \begin{displaymath} X \times_Y (\colim_{U \to Y} U) \to colim_{U \to Y} U \,. \end{displaymath} Then using that colimits of presheaves are [[commutativity of limits and colimits|stable under base change]] this is \begin{displaymath} (\colim_{U \to Y}(X \times_Y U)) \to colim_{U \to Y} U \,. \end{displaymath} Recall that by assumption the components $X \times_Y U \to U$ of this are local isomorphisms. Hence \begin{displaymath} (Hom(Y,A) \to Hom(X,A)) = lim_{U \to Y} Hom(U, A) \to \lim_{U \to Y} Hom(X \times_Y U, A) \end{displaymath} is a limit over isomorphisms, hence an isomorphism. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} This is in section 16.2 of \begin{itemize}% \item Kashiwara-Schapira, \emph{[[Categories and Sheaves]]} . \end{itemize} See in particular exercise 16.5 there for the characterization of [[Grothendieck topology|Grothendieck topologies]] in terms of local isomorphisms. [[!redirects local isomorphisms]] \end{document}