\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{local object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_for_ordinary_categories}{Definition for ordinary categories}\dotfill \pageref*{definition_for_ordinary_categories} \linebreak \noindent\hyperlink{local_objects}{Local objects}\dotfill \pageref*{local_objects} \linebreak \noindent\hyperlink{local_morphisms}{Local morphisms}\dotfill \pageref*{local_morphisms} \linebreak \noindent\hyperlink{definition_for_categories}{Definition for $(\infty,1)$-categories}\dotfill \pageref*{definition_for_categories} \linebreak \noindent\hyperlink{local_objects_2}{Local objects}\dotfill \pageref*{local_objects_2} \linebreak \noindent\hyperlink{local_morphisms_2}{Local morphisms}\dotfill \pageref*{local_morphisms_2} \linebreak \noindent\hyperlink{definition_in_model_categories}{Definition in model categories}\dotfill \pageref*{definition_in_model_categories} \linebreak \noindent\hyperlink{PropInModCat}{Properties}\dotfill \pageref*{PropInModCat} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{saturated_class_of_morphisms}{Saturated class of morphisms}\dotfill \pageref*{saturated_class_of_morphisms} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[reflective localization|Reflective localizations]] of categories and higher categories in the sense of [[left adjoint]] functors $L : C \to C'$ to inclusions $C' \hookrightarrow C$ of full subcategories (as in particular for [[geometric embeddings]]) are characterized by the collection $S \subset Mor(C)$ of morphisms of $C$ which are sent by $L$ to isomorphisms, or more generally to equivalences, as well as by the collection of objects which are \emph{local} with respect to these morphisms, in that these morphisms behave as equivalences with respect to homming into objects. \hypertarget{definition_for_ordinary_categories}{}\subsection*{{Definition for ordinary categories}}\label{definition_for_ordinary_categories} \hypertarget{local_objects}{}\subsubsection*{{Local objects}}\label{local_objects} Let $C$ be a [[category]] and $S$ a collection of [[morphisms]] in $C$. Then an [[object]] $c \in C$ is \textbf{$S$-local} if the [[hom-functor]] \begin{displaymath} C(-,c) : C^{op} \to Set \end{displaymath} sends morphisms in $S$ to [[isomorphisms]] in [[Set]], i.e. if for every $s : a \to b$ in $S$, the function \begin{displaymath} C(s,c) : C(b,c) \to C(a,c) \end{displaymath} is a [[bijection]]. \hypertarget{local_morphisms}{}\subsubsection*{{Local morphisms}}\label{local_morphisms} Conversely, a \textbf{morphism} $f : x \to y$ is \textbf{$S$-local if for every $S$-local object $c$ the induced morphism} \begin{displaymath} C(f,c) : C(y,c) \to C(x,c) \end{displaymath} is an isomorphism. \hypertarget{definition_for_categories}{}\subsection*{{Definition for $(\infty,1)$-categories}}\label{definition_for_categories} \hypertarget{local_objects_2}{}\subsubsection*{{Local objects}}\label{local_objects_2} \begin{defn} \label{}\hypertarget{}{} Let $C$ be an [[(∞,1)-category]] and $S$ a collection of morphisms in $C$. Then an [[object]] $c \in C$ is \textbf{$S$-local} if the [[hom-functor]] \begin{displaymath} C(-,c) : C^{op} \to \infty Top \end{displaymath} evaluated on $s \in S$ induces isomorphism in the [[homotopy category]] of [[Top]]. \end{defn} This is \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf#page=383}{5.5.4.1} in [[Higher Topos Theory|HTT]] \hypertarget{local_morphisms_2}{}\subsubsection*{{Local morphisms}}\label{local_morphisms_2} Conversely, a \textbf{morphism} $f : x \to y$ is \textbf{$S$-local} if for every $S$-local object $c$ the induced morphism \begin{displaymath} C(f,c) : C(y,c) \to C(x,c) \end{displaymath} induces an isomorphism in the [[homotopy category]] of [[Top]]. \hypertarget{definition_in_model_categories}{}\subsection*{{Definition in model categories}}\label{definition_in_model_categories} Let $C$ be a [[model category]] (usefully but not necessarily a [[simplicial model category]]). And let $S \subset Mor(C)$ be a collection of [[morphism]]s in $C$. Write $\mathbf{R}Hom_C(-,-) : C^{op}\times C \to SSet$ for the [[(infinity,1)-categorical hom-space|derived hom space functor]]. For instance if $C$ is a [[simplicial model category]] then this may be realized in terms of a cofibrant replacement functor $Q : C \to C$ and a fibrant replacement functor $P$ as \begin{displaymath} \mathbf{R}Hom_C(X,Y) = C(Q X, P Y) \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} \textbf{(local object, local weak equivalence)} An object $c \in C$ is a \textbf{$S$-local object} if for all $s : a \to b$ in $S$ the induced morphism \begin{displaymath} \mathbf{R}Hom_C(s,c) : \mathbf{R}Hom_C(b,c) \to \mathbf{R}Hom_C(a,c) \end{displaymath} is a weak equivalence (in the standard [[model structure on simplicial sets]]); A morphism $f : x \to y$ in $C$ is an \textbf{$S$-local morphism} or \textbf{$S$-equivalence} if for every $S$-local object $c$ the induced morphism \begin{displaymath} \mathbf{R}Hom_C(f,c) : SSet \to SSet \end{displaymath} is a weak equivalence. An \textbf{$S$-localization of an object} $c$ is an $S$-local object $\hat c$ and an $S$-local equivalence $c \to \hat c$. An \textbf{$S$-localization of a morphism} $f : c \to d$ is a pair of $S$-localizations $c \to \hat c$ and $d \to \hat d$ of objects, and a commuting square \begin{displaymath} \itexarray{ c &\stackrel{f}{\to}& d \\ \downarrow && \downarrow \\ \hat c &\to & \hat d } \,. \end{displaymath} \end{defn} \hypertarget{PropInModCat}{}\subsubsection*{{Properties}}\label{PropInModCat} In [[proper model category|left proper model categories]] there is an equivalent stronger characterization of $S$-locality of cofibrations $i : A \hookrightarrow B$. \begin{prop} \label{}\hypertarget{}{} \textbf{(characterization of $S$-local cofibrations)} Let $C$ be a [[proper model category|left proper]] [[simplicial model category]] and $S \subset Mor(C)$, a collection of morphisms. Then a cofibration $i : A \hookrightarrow B$ is an $S$-local weak equivalence precisely if for all fibrant $S$-local objects $X$ the morphism \begin{displaymath} C(B,X) \to C(A,X) \end{displaymath} is an acyclic fibration in the standard [[model structure on simplicial sets]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} Notice that this is stronger than the statement that $\mathbf{R}Hom(B,X) \to \mathbf{R}Hom(A,X)$ is a weak equivalence not only in that it asserts in addition a fibration, but also in that it deduces this without first passing to a cofibrant replacement of $A$ and $B$. \end{remark} \begin{proof} This is [[Higher Topos Theory|HTT, lemma A.3.7.1]]. The proof makes use of the following general construction: for $f : A \to B$ any morphism let $\emptyset \hookrightarrow A' \stackrel{\simeq}{\to} A$ be a cofibrant replacement, factor $A' \to B$ as $A' \stackrel{i'}{\hookrightarrow} B' \stackrel{\simeq}{\to} B$ and consider the [[pushout]] diagram \begin{displaymath} \itexarray{ A' &\stackrel{i'}{\hookrightarrow}& B' \\ \downarrow^{\mathrlap{f \in W}} && \downarrow_{\mathrlap{g\in W}} & \searrow^{\mathrlap{f' \in W}} \\ A &\stackrel{}{\hookrightarrow}& A \coprod_{A'} B &\stackrel{j \in W}{\to}& B } \,. \end{displaymath} By [[proper model category|left properness]] the pushout $g$ of the weak equivalence $f$ along the cofibration $i'$ is again a weak equivalence and by [[category with weak equivalences|2-out-of-3]] the morphism $j$ is a weak equivalence. Now assume that $i$ is an $S$-local equivalence. We need to show that $i^* : C(B,X) \to C(A,X)$ is an acyclic Kan fibration for all fibrant $S$-local $X$. By the very definition of [[enriched model category]] it follows from $i$ being a cofibration and $X$ being fibrant that this is a Kan fibration. So it remains to show that it is a [[weak homotopy equivalence]] of [[simplicial set]]s. We know that the corresponding induced morphism \begin{displaymath} ({i'}^* : C(B',X) \to C(A',X)) \simeq (\mathbf{R}Hom(B,X) \to \mathbf{R}Hom(A,X)) \end{displaymath} on the cofibrant replacement is a weak equivalence, by the assumption that $X$ is $S$-local, and also, as before, a fibration, since $i'$ is still a cofibration. By homming the entire diagram above into $X$, and using that the [[hom-functor]] $C(-,X)$ sends [[colimit]]s to [[limit]]s, we find the [[pullback]] diagram \begin{displaymath} \itexarray{ C(A \coprod_{A'} B', X) &\to& C(B',X) \\ {}^{q}\downarrow^{\mathrlap{\in (W\cap fib)_{SSet}}} && {}^{{i'}^*}\downarrow^{\mathrlap{\in (W\cap fib)_{SSet}}} \\ C(A,X) &\to& C(A',X) } \end{displaymath} in [[SSet]], which shows that $q$ is an acyclic fibration, being the pullback of an acyclic fibration. To show that $i^*: C(B,X) \to C(A,X)$ is a weak equivalence it suffices to show that all its fibers $(i^*)^{-1})(t)$ over elements $t : A \to X$ are [[contractible]] [[Kan complex]]es. These fibers map to the corresponding fibers $q^{-1}(t)$ by precomposition with $j$. By the fact that $j$, regarded as a morphism \begin{displaymath} \itexarray{ && A \\ & {}\swarrow && \searrow \\ A \coprod_{A'} B' &&\stackrel{j}{\to}&& B } \end{displaymath} in the [[model structure on an over category|model structure on the undercategory]] $A/C$ is a weak equivalence between cofibrant objects (because $A \hookrightarrow B$ is a cofibration by assumption and $A \to A \coprod_{A'} B'$ as being the pushout of the cofibration $i'$) we have that precomposition $C(j,X)$ with $j$ is the image under the [[SSet]]-[[enriched functor|enriched]] [[hom-functor]] of a weak equivalence between cofibrant objects mapping into a fibrant object \begin{displaymath} \itexarray{ && A \\ & \swarrow & \downarrow & \searrow^{t} \\ A \coprod_{A'} B' &\stackrel{j}{\to}& B &\to& X } \end{displaymath} and hence, by the general properties of \href{http://ncatlab.org/nlab/show/%28infinity,1%29-categorical+hom-space#enriched_homs_between_cofibrantfibrant_objects_6}{enriched homs between cofibrant/fibrant objects} a weak equivalence. $j^* : (i^*)^{-1}(t) \stackrel{\simeq}{\to} q^{-1}(t)$, so that indeed $(i^*)^{-1}(t)$ is contractible. This proves the first part of the statement. For the converse statement, assume now that\ldots{} \end{proof} \hypertarget{references}{}\subsubsection*{{References}}\label{references} A classical textbook reference is section 3.2 of \begin{itemize}% \item Hirschhorn, \emph{Model categories and their localization} \end{itemize} A useful reference with direct ties to the [[(∞,1)-category]] story in the background is section A.3.7 of \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]] \end{itemize} \hypertarget{saturated_class_of_morphisms}{}\subsection*{{Saturated class of morphisms}}\label{saturated_class_of_morphisms} Every morphism in $S$ is $S$-local. The collection $S$ of morphisms is called \textbf{saturated} if the collection of $S$-local morphisms coincides with $S$. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item a [[reflective subcategory]] as well as a [[reflective (∞,1)-subcategory]] can be realized as the full ($(\infty,1)$-)subcategory on $S$-local objects, where $S$ is the collection of morphisms sent by the corresponding [[localization of an (∞,1)-category]] to equivalences. For details on this see the discussion at [[geometric embedding]]. \end{itemize} [[!redirects local objects]] [[!redirects local morphism]] [[!redirects local morphisms]] \end{document}