\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{local system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{sheaftheoretic_case}{Sheaf-theoretic case}\dotfill \pageref*{sheaftheoretic_case} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{local system} -- which is short for \emph{local system of [[coefficients]] for [[cohomology]]} -- is a system of coefficients for [[twisted cohomology]]. Often this is presented or taken to be presented by a [[locally constant sheaf]]. Then cohomology with coefficients in a local system is the corresponding [[sheaf cohomology]]. More generally, we say a \emph{local system} is a [[locally constant stack]], \ldots{} and eventually a [[locally constant ∞-stack]]. Under suitable conditions (if we have [[Galois theory]]) local systems on $X$ correspond to [[functor]]s out of the [[fundamental groupoid]] of $X$, or more generally to [[(∞,1)-functor]]s out of the [[fundamental ∞-groupoid]]. These in turn are equivalently [[flat connections]] (this relation is known as the \emph{[[Riemann-Hilbert correspondence]]}) or generally [[flat ∞-connections]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A notion of [[cohomology]] exists intrinsically within any [[(∞,1)-topos]]. We discuss local systems first in this generality and then look at special cases, such as local systems as ordinary [[sheaves]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} For $\mathbf{H}$ an [[(∞,1)-sheaf (∞,1)-topos]], write \begin{displaymath} (LConst \dashv \Gamma) : \mathbf{H} \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} for the [[terminal object|terminal]] [[(∞,1)-geometric morphism]], where $\Gamma$ is the [[global section]] [[(∞,1)-functor]] and $LConst$ the [[constant ∞-stack]]-functor. Write $\mathcal{S} := core(Fin \infty Grpd) \in$ [[∞Grpd]] for the [[core]] [[∞-groupoid]] of the [[(∞,1)-category]] of finite $\infty$-groupoids. (We can drop the finiteness condition by making use of a higher [[universe]].) This is canonically a [[pointed object]] $* \to \mathcal{S}$, with points the terminal groupoid. \begin{defn} \label{}\hypertarget{}{} For $X \in \mathbf{H}$ an [[object]], a \textbf{local system} or \emph{[[locally constant ∞-stack]]} on $X$ is a morphism \begin{displaymath} \tilde \nabla \colon X \longrightarrow LConst \mathcal{S} \end{displaymath} in $\mathbf{H}$ or equivalently the object in the [[over-(∞,1)-topos]] \begin{displaymath} (P \to X) \in \mathbf{H}/X \end{displaymath} that is classified by $\tilde \nabla$ under the [[(∞,1)-Grothendieck construction]] \begin{displaymath} \itexarray{ P &\to& LConst \mathcal{Z} \\ \downarrow && \downarrow \\ X &\stackrel{\tilde \nabla}{\to}& LConst \mathcal{S} } \end{displaymath} In other words, local systems are [[locally constant ∞-stacks]] or equivalently their classifying [[cocycles]] for [[cohomology with constant coefficients]]. \end{defn} (See [[principal ∞-bundle]] for discussion of how [[cocycle]]s $\tilde \nabla : X \to LConst \mathcal{S}$ classify morphisms $P \to X$.) \hypertarget{remark}{}\paragraph*{{Remark}}\label{remark} If $\mathbf{H}$ happens to be a [[locally ∞-connected (∞,1)-topos]] in that there is the further [[left adjoint|left]] [[adjoint (∞,1)-functor]] $\Pi$ \begin{displaymath} (\Pi \dashv LConst \dashv \Gamma) : \mathbf{H} \to \infty Grpd \end{displaymath} we call $\Pi(X)$ the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]]. In this case, by the adjunction hom-equivalence we have \begin{displaymath} \mathbf{H}(X, LConst \mathcal{S}) \simeq Func(\Pi(X), \mathcal{S}) \,. \end{displaymath} This means that local systems are naturally identified with [[representations]] ($\infty$-[[permutation representation]]s, as it were) of the [[fundamental ∞-groupoid]] $\Pi(X)$: \begin{displaymath} Maps(X, LConst \mathcal{S}) \simeq Maps(\Pi(X), \mathcal{S}) \,. \end{displaymath} This is essentially the basic statement around which [[Galois theory]] revolves. The [[(∞,1)-sheaf (∞,1)-topos]] over a [[locally contractible space]] is locally $\infty$-connected, and many authors identify local systems on such a topological space with representations of its [[fundamental groupoid]]. \begin{defn} \label{}\hypertarget{}{} Given a local system $\tilde \nabla : X \to LConst \mathcal{S}$, the cohomology of $X$ with this \textbf{local system of coefficients} is the intrinsic [[cohomology]] of the [[over-(∞,1)-topos]] $\mathbf{H}/X$: \begin{displaymath} H(X,\tilde \nabla) := \mathbf{H}_{/X}(X, P_{\tilde \nabla}) \,, \end{displaymath} where $P_{\tilde\nabla}$ is the [[homotopy fiber]] of $\tilde \nabla$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Unwinding the definitions and using the universality of the [[(∞,1)-pullback]], one sees that a [[cocycle]] $c \in \mathbf{H}(X,\tilde \nabla)$ is a [[diagram]] \begin{displaymath} \itexarray{ X &&\stackrel{c}{\to}&& * \\ & \searrow &\swArrow& \swarrow \\ && LConst \mathcal{S} } \end{displaymath} in $\mathbf{H}$. This is precisely a [[section]] of the [[locally constant ∞-stack]] $\tilde \nabla$. \end{remark} \hypertarget{sheaftheoretic_case}{}\subsubsection*{{Sheaf-theoretic case}}\label{sheaftheoretic_case} Local systems can also be considered in abelian contexts. One finds the following version of a local system \begin{defn} \label{}\hypertarget{}{} A \textbf{linear local system} is a [[locally constant sheaf]] on a [[topological space]] $X$ (or manifold, analytic manifold, or algebraic variety) whose stalk is a finite-dimensional [[vector space]]. \end{defn} Regarded as a sheaf $F$ with values in [[abelian group]]s, such a linear local system serves as the coefficient for [[abelian sheaf cohomology]]. As discussed there, this is in degree $n$ nothing but the intrinsic cohomology of the $\infty$-topos with coefficients in the [[Eilenberg-MacLane object]] $\mathbf{B}^n F$. \begin{lemma} \label{}\hypertarget{}{} On a connected topological space this is the same as a sheaf of sections of a finite-dimensional [[vector bundle]] equipped with flat [[connection on a bundle]]; and it also corresponds to the [[representations]] of the [[fundamental group]] $\pi_1(X,x_0)$ in the typical stalk. On an analytic manifold or a variety, there is an equivalence between the category of non-singular coherent $D_X$-[[D-module|modules]] and local systems on $X$. \end{lemma} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[flat vector bundle]] \item [[simplicial local system]]: within Sullivan's (1977) theory of \emph{Infinitesimal computations in topology}, he refers to `local systems' several times. This seems to be simplicial in nature. [[simplicial local system|This]] entry explores some of the uses of that notion based on Halperin's lecture notes on minimal models \begin{itemize}% \item D. Sullivan, \emph{Infinitesimal computations in topology} (\href{http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_1977__47_/PMIHES_1977__47__269_0/PMIHES_1977__47__269_0.pdf}{pdf}) \end{itemize} \item [[twisted cohomology]], [[local coefficient bundle]], [[twisted infinity-bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An early version of the definition of local system appears in \begin{itemize}% \item [[Norman Steenrod]]: \emph{Homology with local coefficients}, Annals 44 (1943) pp. 610 - 627, \end{itemize} This is before the formal notion of [[sheaf]] was published by [[Jean Leray]]. (Wikipedia's entry on \href{http://en.wikipedia.org/wiki/Sheaf_%28mathematics%29#History}{Sheaf theory} is interesting for its historical perspective on this.) A definition appears as an exercise in \begin{itemize}% \item [[Edwin Spanier]], 1966, Algebraic Topology , McGraw Hill. (republished by Springer, 1982). \end{itemize} on page 58 : \begin{quote}% \emph{A local system on a space $X$ is a covariant functor from the fundamental groupoid of $X$ to some category.} \end{quote} A blog exposition of some aspects of linear local system is developed here: \begin{itemize}% \item [[David Speyer]], \emph{Three ways of looking at a local system} \begin{itemize}% \item \href{http://sbseminar.wordpress.com/2009/04/20/three-ways-of-looking-at-a-local-system-introduction-and-connection-to-cohomology-theories/}{Introduction and connection to cohomology theories} \item \href{http://sbseminar.wordpress.com/2009/04/21/local-systems-the-path-groupoid-approach/}{the path groupoid approach} \item \href{http://sbseminar.wordpress.com/2009/04/30/three-ways-of-looking-at-a-local-system-the-infinitesimal-perspective/}{the infinitesimal perspective} \item \href{http://sbseminar.wordpress.com/2009/05/06/the-infinitesimal-site/}{the infinitesimal site} \end{itemize} \end{itemize} A clear-sighted description of locally constant $(n-1)$-stacks / $n$-local systems as sections of constant $n$-stacks is in \begin{itemize}% \item [[Pietro Polesello]], [[Ingo Waschkies]], Higher monodromy, Homology, Homotopy and Applications, Vol. 7(2005), No. 1, pp. 109-150;\href{http://arxiv.org/abs/math/0407507}{arXiv:0407507} \end{itemize} for [[locally constant stack]]s on [[topological space]]s. The above formulation is pretty much the evident generalization of this to general [[(∞,1)-topos]]es. Discussion of [[Galois representations]] as encoding local systems in [[arithmetic geometry]] includes \begin{itemize}% \item Tom Lovering, \emph{\'E{}tale cohomology and Galois Representations}, 2012 (\href{http://tlovering.files.wordpress.com/2012/06/essay-body1.pdf}{pdf}) \end{itemize} See also at \emph{[[function field analogy]]}. [[!redirects local systems]] [[!redirects local system of coefficients]] [[!redirects local systems of coefficients]] [[!redirects cohomology with a local system of coefficients]] \end{document}