\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localizable measure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{localizable_measures}{}\section*{{Localizable measures}}\label{localizable_measures} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{other_localizable_structures}{Other localizable structures}\dotfill \pageref*{other_localizable_structures} \linebreak \noindent\hyperlink{in_weak_foundations}{In weak foundations}\dotfill \pageref*{in_weak_foundations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Many of the important theorems of [[measure theory]] fail to hold in full generality. (See below under Theorems for which theorems we're talking about.) Often these theorems are stated for $\sigma$-[[sigma-finite measures|finite measures]], but they do hold a bit more generally than that. In fact, they hold for \emph{localizable} measures, and this fact \emph{characterizes} the localizable measures. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The following definition is in elementary terms; but we will see that there are many other characterizations. Let $\mu$ be a [[positive measure]] on an [[abstract set]] $X$. (That is, certain [[subsets]] of $X$, forming a $\sigma$-[[sigma-algebra|algebra]], are [[measurable set|measurable]] by $\mu$, and $\mu$ maps these sets to the space $[0,\infty]$ of [[lower real numbers]] in a [[monotone function|monotone]] and [[countably additive measure|countably additive]] way.) Given two measurable subsets $E$ and $F$, $E$ \textbf{essentially contains} $F$ if the set \begin{displaymath} \{ x\colon X \;|\; x \in F \;\Rightarrow\; x \in E \} \end{displaymath} is [[full set|full]]; or equivalently (using [[excluded middle]]) if $F \setminus E$ is [[null set|null]]. (This is a [[preorder]] on the measurable sets.) Then $\mu$ is \textbf{localizable} if the following conditions both apply: \begin{itemize}% \item Semifiniteness: Every measurable set $E$ with positive measure essentially contains a measurable set with finite positive measure. (We may strengthen `essentially contains' to `contains' in this clause.) \item Essential suprema: Given any collection $\mathcal{C}$ of measurable sets, there is a measurable set $E$ such that: \begin{itemize}% \item $E$ essentially contains each element of $\mathcal{C}$; and \item Given any measurable set $F$ that essentially contains every element of $\mathcal{C}$, $F$ essentially contains $E$. \end{itemize} (This set $E$ is essentially unique, in that it essentially contains and is essentially contained in any other set with the same property; we call $E$ [[the]] \textbf{essential union} $\ess \bigcup \mathcal{C}$ of $\mathcal{C}$.) \end{itemize} We generalize to [[measures]] taking place in some space other than $[0,\infty]$: a $\mu$ is \textbf{localizable} if ${|\mu|}$ is, as long as $\mu$ has an [[absolute value]] (or [[total variation]]) ${|\mu|}$ that takes values in $[0,\infty]$. Of course, a set equipped with a localizable measure is a \textbf{localizable measure space}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Every $\sigma$-[[sigma-finite measure|finite]] measure is localizable. (Since this includes so many examples, the theorems below are often stated for $\sigma$-finite measures.) Any [[counting measure]] is localizable (but $\sigma$-finite only on a [[countable set]]). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The following [[sheaf]] condition is fundamental: Given any [[cover]] $\mathcal{U}$ of $X$ (a localizable measure space) by [[measurable sets]] and a $\mathcal{U}$-indexed [[family]] $f$ of [[partial function|partial]] [[measurable functions]] (with $\dom f_A = A$), if always $f_A = f_B$ almost everywhere on $A \cap B$ (meaning that there is a [[full subset]] $E$ of $X$ such that $f_A = f_B$ on $A \cap B \cap E$), then there exists a (necessarily unique up to [[almost equality]]) measurable (and total) function $\ess \bigcup f$ such that always $\ess \bigcup f = f_A$ almost everywhere on $A$. (This is Theorem 213N in \hyperlink{Fremlin}{Fremlin}. I don't know if it characterizes localizable measures.) Slightly more generally, start with \emph{any} family of partial measurable functions on $X$ and treat it as a cover of (any representative of) the essential union of its domains. \ldots{} other results such as the [[Radon–Nikodym theorem]] \ldots{} These ideas are elaborated at [[measurable space]] [[Boolean toposes]] and [[Boolean valued model]]s and [[forcing]]. \hypertarget{other_localizable_structures}{}\subsection*{{Other localizable structures}}\label{other_localizable_structures} Whether a semifinite measure $\mu$ is localizable depends only on which measurable sets are [[full set|full]] (or [[null set|null]]). Sometimes it is convenient to equip a [[measurable space]] with a $\delta$-[[delta-filter|filter]] of full sets (or a $\sigma$-[[sigma-ideal|ideal]] of null sets), without equipping it with the measure of any other set. A \textbf{localizable measurable space} is a measurable space so equipped, such that every collection of measurable sets has an essential union. (It is a theorem, I believe, that every localizable measurable space is capable of supporting a semifinite, hence localizable, measure with the same full/null sets.) Knowing the full/null sets is also sufficient to define [[almost equality]] of [[measurable functions]] between measurable spaces; this gives us a [[category]] $Loc Meas$ of localizable measurable spaces. This category is [[dual category|dual]] to the category of [[commutative ring|commutative]] [[von Neumann algebras]]; hence an arbitrary von Neumann algebra may be viewed as a \emph{noncommutative} localizable measurable space (in the sense of [[noncommutative geometry]]). If $\mathcal{M}$ is the $\sigma$-[[sigma-algebra|algebra]] of measurable sets and $\mathcal{F}$ is the $\delta$-filter of full sets (or $\mathcal{N}$ is the $\sigma$-ideal of null sets), then we may form the [[quotient ring|quotient]] [[boolean algebra]] $\mathcal{M}/\mathcal{F}$ (or $\mathcal{M}/\mathcal{N}$) by identifying each full set with the [[improper subset|entire space]] (or identifying each null set with the [[empty subset|empty set]]). Then a measurable space is localizable iff this quotient is [[complete boolean algebra|complete]]; this is the real point of the notion of localizability. This boolean algebra is all the structure needed to specify a measure on the original space (at least one that is [[absolutely continuous measure|absolutely continuous]] in that it has at least the requisite full/null sets). We can now abstract away the [[underlying set]] and simply look at the complete boolean algebra. However, it is \emph{not} true that every complete boolean algebra is capable of arising in this way from a measurable space. Those which do so arise may be called \textbf{[[measurable locales]]}, since a complete boolean algebra is a [[frame]] and measurable functions (up to almost equality) between the measurable spaces correspond to [[continuous maps]] between the frames, thought of as [[locales]]. (That is, $Loc Meas$ is [[equivalence of categories|equivalent]] to $Meas Loc$, a sort of pun.) Without requiring localizability, the boolean algebra $\mathcal{M}/\mathcal{F}$ (or $\mathcal{M}/\mathcal{N}$) is called a [[measurable algebra]]; equipped with a measure, we have a [[measure algebra]]. Thus a measurable locale is the same thing as a \textbf{localizable measurable algebra}, and one may also speak of \textbf{localizable measure algebras} (with the category of these equivalent to the category localizable measure spaces, so long as morphisms in the latter are again only defined up to almost equality). \hypertarget{in_weak_foundations}{}\subsection*{{In weak foundations}}\label{in_weak_foundations} The [[axiom of choice]] is indispensable for the development above, as stated. (The reason is that one constantly makes choices among essentially equivalent measurable sets, or among almost equal measurable functions.) However, the [[category]] of localizable measurable spaces (and [[measurable functions]] up to [[almost equality]]) is (assuming choice) [[equivalence of categories|equivalent to]] the category of [[measurable locales]], which may prove to be more tractable without choice, even in [[constructive mathematics]]. That said, nobody has worked out a constructive development of this yet. (In particular, identifying which boolean algebras we want is more difficult; perhaps surprisingly, they are still boolean, but they are no longer necessarily complete!) \hypertarget{references}{}\subsection*{{References}}\label{references} This giant treatise on all of [[measure theory]] is free (in both senses) online: \begin{itemize}% \item D.H. Fremlin, \emph{Measure Theory}, \href{https://www1.essex.ac.uk/maths/people/fremlin/mt.htm}{web} \end{itemize} [[!redirects localizable measure]] [[!redirects localizable measures]] [[!redirects localisable measure]] [[!redirects localizable measures]] [[!redirects localizable measure space]] [[!redirects localizable measure spaces]] [[!redirects localisable measure space]] [[!redirects localizable measure spaces]] [[!redirects localizable measurable space]] [[!redirects localizable measurable spaces]] [[!redirects localisable measurable space]] [[!redirects localisable measurable spaces]] [[!redirects localizable measure algebra]] [[!redirects localizable measure algebras]] [[!redirects localisable measure algebra]] [[!redirects localisable measure algebras]] \end{document}