\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{reflective_localization}{Reflective localization}\dotfill \pageref*{reflective_localization} \linebreak \noindent\hyperlink{localizations_of_enriched_categories}{Localizations of enriched categories}\dotfill \pageref*{localizations_of_enriched_categories} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{general_construction}{General construction}\dotfill \pageref*{general_construction} \linebreak \noindent\hyperlink{construction_when_there_is_a_calculus_of_fractions}{Construction when there is a calculus of fractions}\dotfill \pageref*{construction_when_there_is_a_calculus_of_fractions} \linebreak \noindent\hyperlink{in_abelian_categories}{In abelian categories}\dotfill \pageref*{in_abelian_categories} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In general, [[localization]] is a process of adding formal inverses to an algebraic structure. The \emph{localization} of a [[category]] $C$ at a collection $W$ of its [[morphism]]s is -- if it exists -- the result of universally making all morphisms in $W$ into [[isomorphism]]s. \hypertarget{motivation}{}\subsubsection*{{Motivation}}\label{motivation} A classic example is the [[localization of a commutative ring]]: we can `localize the ring $\mathbb{Z}$ away from the prime $2$' and obtain the ring $\mathbb{Z}[\frac{1}{2}]$, or localize it away from all primes and obtain its field of fractions: the field $\mathbb{Q}$ of [[rational number|rational numbers]]. The terminology is odd for historical and geometric reasons: localizing \emph{at} a prime means inverting things \emph{not} divisible by that prime, while inverting the prime itself is called localizing \emph{away} from that prime. The reason for this, as well as for the term `localization', becomes more apparent when we consider examples of a more vividly geometric flavor. For example, the ring $\mathbb{R}[x]$ consists of [[polynomial]] functions on the real line. If we pick a point $a \in \mathbb{R}$ and localize $\mathbb{R}[x]$ by putting in an inverse to the element $(x-a)$, the resulting ring consists of [[rational function]]s defined \emph{everywhere} on the real line \emph{except} possibly at the point $a$. This is called \textbf{localization \emph{away from} $a$}, or localization away from the [[ideal]] $I$ generated by $(x-a)$. If on the other hand we put in an inverse to every element of $\mathbb{R}[x]$ that is \emph{not} in the ideal $I$, we obtain the ring of rational functions defined \emph{somewhere} on the real line \emph{at least} at the point $a$: namely, those without a factor of $(x-a)$ in the denominator. This is called \textbf{localizing \emph{at} $a$}, or localizing at the ideal $I$. Notice that what is literally `localized' when localizing the ring is not the ring itself, but its [[spectrum of a commutative ring|spectrum]]: the spectrum becomes smaller. The spectrum of $\mathbb{R}[x]$ is the whole real line. When we localize away from $a$, the resulting ring has spectrum $\mathbb{R} - \{a\}$. When we localize at $a$, the resulting ring has spectrum $\{a\}$. The case of localizing $\mathbb{Z}$ can also be interpreted geometrically in a similar way, using [[scheme]] theory and [[arithmetic geometry]]. A ring is a very special case of a [[category]], namely a one-object [[Ab-enriched category]]. This article mainly treats the more general case of localizing an arbitrary category. The localization of a category $C$ at a class of [[morphisms]] $W$ is the universal solution to making the morphisms in $W$ into [[isomorphisms]]; it is variously written $C[W^{-1}]$, $W^{-1}C$ or $L_W C$. In some contexts, it also could be called the [[homotopy category]] of $C$ with respect to $W$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[category]] and $W \subset Mor(C)$ a collection of [[morphisms]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} A \textbf{localization} of $C$ by $W$ (or ``at $W$'') is \begin{itemize}% \item a (generally [[large category|large]], see below) [[category]] $C[W^{-1}]$; \item and a [[functor]] $Q : C \to C[W^{-1}]$; \item such that \begin{itemize}% \item for all $w \in W$, $Q(w)$ is an [[isomorphism]]; \item for any category $A$ and any [[functor]] $F : C \to A$ such that $F(w)$ is an [[isomorphism]] for all $w \in W$, there exists a functor $F_W : C[W^{-1}] \to A$ and a [[natural transformation|natural isomorphism]] $F \simeq F_W \circ Q$; \item the map between [[functor category|functor categories]] \begin{displaymath} (-)\circ Q : Funct(C[W^{-1}], A) \to Funct(C,A) \end{displaymath} is [[fully faithful functor|full and faithful]] for every category $A$. \end{itemize} \end{itemize} Note: \begin{itemize}% \item if $C[W^{-1}]$ exists, it is unique up to [[equivalence]]. \item In 2-categorical language, $C[W^{-1}]$ is the [[coinverter]] of the canonical natural transformation $s\to t$, where $s,t:W\to C$ are the ``source'' and ``target'' functors and $W$ is considered as a full subcategory of the [[arrow category]] $C ^{\mathbf{2}}$. \end{itemize} \begin{remark} \label{}\hypertarget{}{} Contrary to what is sometimes asserted, the localization $C[W^{-1}]$ may generally be constructed when $C$ is large, even only in ZF where ``large'' means definable by class formulas. See Remark \ref{ZF} below. However, the localization might not be locally small, even if $C$ is. The tools of [[homotopy theory]], and in particular [[model category|model categories]], can be used to address this issue (see also at \emph{[[homotopy category of a model category]]}). \end{remark} \hypertarget{reflective_localization}{}\subsubsection*{{Reflective localization}}\label{reflective_localization} A special class of localizations are \emph{[[reflective localizations]]}, those where the functor $C \to L_W C$ has a [[full and faithful functor|full and faithful]] [[right adjoint]] $L_W C \hookrightarrow C$. In such a case \begin{displaymath} L_W C \stackrel{\overset{Q}{\leftarrow}}{\hookrightarrow} C \end{displaymath} this adjoint exhibits $L_W C$ as a [[reflective subcategory]] of $C$. One shows that $L_W C$ is -- up to [[equivalence of categories]] -- the full subcategory on the $W$-[[local object]]s, and this property precisely characterizes such reflective localizations. More on this is at \emph{[[reflective localization]]}, \emph{[[reflective subcategory]]}, \emph{[[reflective sub-(∞,1)-category]]}, and [[reflective factorization system]]. \hypertarget{localizations_of_enriched_categories}{}\subsubsection*{{Localizations of enriched categories}}\label{localizations_of_enriched_categories} Given a symmetric closed monoidal category $V$, a $V$-enriched category $A$ with underlying ordinary category $A_0$ and a subcategory $\Sigma$ of $A_0$ containing the identities of $A_0$, H. Wolff defines the corresponding theory of localizations. See [[localization of an enriched category]]. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} There is a general construction of $C[W^{-1}]$, if it exists, which is however hard to use. When the system $W$ has special properties, most notably when $W$ admits a [[calculus of fractions]] or a [[factorization system]], then there are more direct formulas for the [[hom-sets]] of $C[W^{-1}]$. \hypertarget{general_construction}{}\subsubsection*{{General construction}}\label{general_construction} If $C$ is a category and $W$ is a set of arrows, we construct the localization of $C$. Let $W^{op}$ be the set in $C^{op}$ corresponding to $W$ (it isn't necessarily a category). Let $G$ be the following [[quiver|directed graph]]: \begin{itemize}% \item the vertices of $G$ are the objects of $C$, \item the arrows of $G$ between two vertices $x,y$ are given by the disjoint union $C(x,y)\coprod W^{op}(x,y)$. \end{itemize} The arrows in $W^{op}(x,y)$ are written as $\overline{f}$ for $f\in W(y,x)$. Let $\mathcal{P}G$ be the [[free functor|free]] category on $G$. The identity arrows are given by the empty path beginning and ending at a given object. We introduce a relation on the arrows of $\mathcal{P}G$ and quotient by the equivalence relation $\sim$ generated by it to get $C[W^{-1}]$. The equivalence relation $\sim$ is generated by \begin{itemize}% \item for all objects $x$ of $C$,\begin{displaymath} (x;id_x;x) \sim (x;\emptyset;x) \end{displaymath} \item for all $f:x\to y$ and $g:y\to z$ in $C$,\begin{displaymath} (x;f,g;z)\sim (x;g\circ f;z) \end{displaymath} \item for all $f:x\to y$ in $W$,\begin{displaymath} (x;f,\overline{f};x)\sim (x;id_x;x) \end{displaymath} and \begin{displaymath} (y;\overline{f},f;y)\sim (y;id_y;y) \end{displaymath} \end{itemize} \begin{remark} \label{ZF}\hypertarget{ZF}{} With a little care, this general construction can be enacted even for \emph{large} categories $C$, where ``large'' means given by a class formula in [[ZF]]. First, to define the free category $\mathcal{P} G$ on a large graph $G$, notice that an arrow of $\mathcal{P} G$ is a certain [[partial function]] or functional relation from $\mathbb{N}$ to $Arr(G)$ satisfying some conditions given by ZF formulas; each such relation is a ``set'' by the [[replacement axiom]], and the collection of such relations forms a definable class of sets. Second, in passing to the quotient, we remark that while the $\sim$-equivalence classes of morphisms in $\mathcal{P} G$ might be large (hence themselves could not be elements of a class), we can always use [[Scott's trick]] and consider instead those representatives in each equivalence class that have minimal ZF [[rank]] (using crucially the [[axiom of foundation]]); this collection of representatives is a \emph{set}. Thus the collection of morphisms in the quotient may be identified with a definable class of sets. The rub is that the localization might not be locally small, even if $C$ is. \end{remark} \hypertarget{construction_when_there_is_a_calculus_of_fractions}{}\subsubsection*{{Construction when there is a calculus of fractions}}\label{construction_when_there_is_a_calculus_of_fractions} If the class $W$ admits a [[calculus of fractions]], then there is a simpler description of $C[W^{-1}]$ in terms of [[span|spans]] instead of zig-zags. The idea is that any morphism $f: x \to z$ in $C[W^{-1}]$ is built from a morphism $f_2 : y \to z$ in $C$ and a morphism $f_1 : y \to x$ in $W$: \begin{displaymath} x \stackrel{f_1}{\longleftarrow} y \stackrel{f_2}{\longrightarrow} z \end{displaymath} For more on this, see the entry [[calculus of fractions]]. Dorette Pronk has extended this idea to construct a [[bicategory of fractions|bicategories of fractions]] where a class of 1-arrows is sent to [[equivalence|equivalences]]. \hypertarget{in_abelian_categories}{}\subsubsection*{{In abelian categories}}\label{in_abelian_categories} Localization is especially well developed in abelian setup where several competing formalisms and input data are used. See [[localization of an abelian category]]. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{itemize}% \item The localization of the [[product category]] of two [[categories with weak equivalences]] is (if it exists) the product of their localizations \begin{displaymath} (\mathcal{C} \times \mathcal{D})[ (W_{\mathcal{C}} \times W_{\mathcal{D}})^{-1} ] \;\; \simeq \;\; ( \mathcal{C}[W_{\mathcal{C}}^{-1}] ) \times ( \mathcal{D}[W_{\mathcal{D}}^{-1}] ) \,. \end{displaymath} This is because localization is a [[reflector]] into the [[exponential ideal]] of minimal categories with weak equivalences. \end{itemize} \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} The notion of localization of a category has analogs in [[higher category theory]]. For [[2-categories]]: \begin{itemize}% \item [[2-localization]] \end{itemize} For [[(∞,1)-categories]] and the special case of reflective embeddings this is discussed in \begin{itemize}% \item [[localization of an (∞,1)-category]]. \end{itemize} Every [[locally presentable (∞,1)-category]] is presented by a [[combinatorial model category|combinatorial]] [[model category]]. Accordingly, there is a model for the localization of $(\infty,1)$-categories in terms of these models. This is called \begin{itemize}% \item left [[Bousfield localization of model categories]] \end{itemize} See also [[localization of a simplicial model category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localizing subcategory]], [[localizer]] \item [[localization at an object]] \item [[monoidal localization]] \item [[simplicial localization]] \item [[localization of a simplicial model category]] \item [[localization of a ring]], [[localization of a commutative ring]] \begin{itemize}% \item [[localization of a module]] \end{itemize} \item [[localization of model categories]] \begin{itemize}% \item [[localization of simplicial model categories]] \item [[Bousfield localization of model categories]] \begin{itemize}% \item [[Bousfield localization of spectra]] \item [[p-localization]] \end{itemize} \end{itemize} \item [[colocalization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The classical reference to localization for categories is the book by Gabriel and Zisman: \begin{itemize}% \item P. Gabriel, M. Zisman, \emph{[[Calculus of fractions and homotopy theory]]}, Springer, New York, 1967. \emph{Ergebnisse der Mathematik und ihrer Grenzgebiete}, Band 35. \end{itemize} A more recent account of localization with a [[calculus of fractions]] is section 7 of \begin{itemize}% \item [[M. Kashiwara]], [[P. Schapira]], \emph{[[Categories and Sheaves]]}, Springer 2000. \end{itemize} An excellent account emphasizing the interplay of the different notions (reflective subcategory, calculus of fractions, closure operator) can be found in ch. V of \begin{itemize}% \item [[Francis Borceux|F. Borceux]], \emph{Handbook of Categorical Algebra vol. 1} , Cambridge UP 1994.\footnote{See also vols.2,3 for examples of the theory in action in abelian categories, sheaf theory etc.} \end{itemize} The pioneering work on abelian categories, with a large part on the localization in abelian categories is \begin{itemize}% \item [[Pierre Gabriel]], [[Des catégories abéliennes]], Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de France, 90 (1962), p. 323-448, \href{http://www.numdam.org/item?id=BSMF_1962__90__323_0}{numdam} \end{itemize} A \textbf{terminological discussion} prompted by question in which sense ``localization'' is a descriptive term or not is archived ion $n$Forum \href{https://nforum.ncatlab.org/discussion/481/localization/?Focus=23461#Comment_23461}{here}. A formal implementation of Gabriel-Zisman localization in [[ZFC]], which in turn is implemented in the [[proof assistant]] [[Coq]] is in \begin{itemize}% \item [[Carlos Simpson]], \emph{Explaining Gabriel-Zisman localization to the computer} (\href{http://arxiv.org/abs/math/0506471}{arXiv:math/0506471}, \href{http://math.unice.fr/~carlos/themes/verif.html}{web}) \end{itemize} A [[HoTT]]-[[Coq]]-formalization of left-exact [[reflective sub-(∞,1)-categories]] ([[localization of an (∞,1)-category]]) in [[homotopy type theory]] is in \begin{itemize}% \item [[Mike Shulman]], \emph{\href{https://github.com/mikeshulman/HoTT/blob/master/Coq/Subcategories/LexReflectiveSubcategory.v}{HoTT/Coq/Subcategories/LexReflectiveSubcategory.v}} \end{itemize} An original account of [[localization of commutative rings]] and of [[p-localization|p-local]] [[homotopy theory]] is \begin{itemize}% \item [[Dennis Sullivan]], \emph{Localization, Periodicity and Galois Symmetry} (The 1970 MIT notes) edited by [[Andrew Ranicki]], K-Monographs in Mathematics, Dordrecht: Springer (\href{http://www.maths.ed.ac.uk/~aar/surgery/gtop.pdf}{pdf}) \end{itemize} [[!redirects localization]] [[!redirects localizations]] [[!redirects localisation]] [[!redirects localisations]] [[!redirects localization of a category]] [[!redirects localizations of a category]] [[!redirects localizations of categories]] [[!redirects localization of categories]] [[!redirects localizations of categories]] [[!redirects localization functor]] [[!redirects localization functors]] [[!redirects localisation functor]] [[!redirects localisation functors]] \end{document}