\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization at geometric homotopies} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In general, given a [[category]] $\mathcal{C}$ and a [[class]] $W$ of [[morphisms]], one may ask for the \emph{[[localization]]} $\mathcal{C}[W^{-1}]$, or more specifically for the [[reflective subcategory]] of $W$-[[local objects]] (the [[reflective localization]]). Similarly for variants in [[higher category]], such as \emph{[[localization of an (∞,1)-category]]}. If $\mathcal{C}$ has [[finite products]], then for a given [[object]] $\mathbb{A} \in \mathcal{C}$, one may take $W \coloneqq W_{\mathbb{A}}$ to be the class of morphisms of the form \begin{displaymath} X \times (\mathbb{A} \overset{\exists!}{\to} \ast) \;\;\colon\;\; X \times \mathbb{A} \overset{p_1}{\longrightarrow} X \,, \end{displaymath} where $X$ is any [[object]], and where $\ast$ is the [[terminal object]], and where $(-) \times (-) \colon \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ denotes the [[Cartesian product]] [[functor]]. The [[reflective localization]] at such a class of morphisms $W_{\mathbb{A}}$ is often referred to as \emph{homotopy localization at the object $\mathbb{A}$} or similar. The idea is that if $\mathbb{A}$ is, or is regarded as, an [[interval object]], then ``geometric'' [[left homotopies]] between morphisms $X \to Y$ are, or would be, given by morphisms out of $X \times \mathbb{A}$, and hence forcing the projections $X \times \mathbb{A} \to X$ to be equivalences means forcing all morphisms to be \emph{[[homotopy invariance|homotopy invariant]]} with respect to $\mathbb{A}$. Typically this is considered in the case that $\mathcal{C}$ is a [[locally presentable category]] with a [[small set]] of [[generators and relations|generating objects]] $G_i$ such that it becomes sufficient to enforce the localization only on the resulting [[small set]] of [[morphisms]] of the form $G_i \times (\mathbb{A} \to \ast)$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The localization of the [[(∞,1)-category of (∞,1)-sheaves]] on the [[Nisnevich site]] at the [[affine line]] $\mathbb{A}^1$ is known as \emph{[[A1-homotopy theory]]}. \item The localization of [[smooth ∞-groupoids]] at the [[real line]] $\mathbb{R}^1$ is equivalently ([[geometrically discrete ∞-groupoids|geometrically discrete]]) [[∞-groupoids]]. After realizing [[smooth ∞-groupoids]] as the [[(∞,1)-sheaves]] over [[CartSp]], $Smooth\infty Grpd \simeq Sh_{\infty}(CartSp)$, this follows from the following Prop. \ref{HomotopyLocalizationOverSiteOfAns}. \end{itemize} \begin{prop} \label{HomotopyLocalizationOverSiteOfAns}\hypertarget{HomotopyLocalizationOverSiteOfAns}{} \textbf{([[homotopy localization]] at $\mathbb{A}^1$ over the [[site]] of $\mathbb{A}^n$s)} Let $\mathcal{C}$ be any [[site]] (\href{geometry+of+physics+--+categories+and+toposes#Coverage}{this Def.}), and write $[\mathcal{C}^{op}, sSet_{Qu}]_{proj, loc}$ for its local projective [[model category of simplicial presheaves]] (\href{geometry+of+physics+--+categories+and+toposes#TopologicalLocalization}{this Prop.}). Assume that $\mathcal{C}$ contains an [[object]] $\mathbb{A} \in \mathcal{C}$, such that every other object is a [[finite product]] $\mathbb{A}^n \coloneqq \underset{n \; \text{factors}}{\underbrace{\mathbb{A} \times \cdots \times \mathbb{A}}}$, for some $n \in \mathbb{N}$. (In other words, assume that $\mathcal{C}$ is also the [[syntactic category]] of [[Lawvere theory]].) Consider the $\mathbb{A}^1$-[[homotopy localization]] (\href{geometry+of+physics+--+categories+and+toposes#HomotopyLocalizationOfCombinatorialModelCategories}{this Def.}) of the [[(∞,1)-sheaf (∞,1)-topos]] over $\mathcal{C}$ (\href{geometry+of+physics+--+categories+and+toposes#TopologicalLocalization}{this Prop.}) \begin{displaymath} Sh_\infty(\mathcal{C})_{\mathbb{A}} \underoverset {\underset{\phantom{AA}\iota\phantom{AA}}{\hookrightarrow}} {\overset{L_{\mathbb{A}}}{\longleftarrow}} {\bot} Sh_\infty(\mathcal{C}) \;\; \in Ho(CombModCat) \end{displaymath} hence the [[left Bousfield localization]] of [[model categories]] \begin{displaymath} [\mathcal{C}^{op}, sSet_{Qu}]_{proj,loc,\mathbb{A}} \underoverset {\underset{\phantom{AA}id\phantom{AA}}{\longrightarrow}} {\overset{id}{\longleftarrow}} {\phantom{{}_{Qu}}\bot_{Qu}} [\mathcal{C}^{op}, sSet_{Qu}]_{proj,loc} \;\; \in CombModCat \end{displaymath} at the set of morphisms \begin{displaymath} S \;\coloneqq\; \big\{ \mathbb{A}^n \times \mathbb{A} \overset{p_1}{\longrightarrow} \mathbb{A}^n \big\} \end{displaymath} (according to \href{geometry+of+physics+--+categories+and+toposes#ExistenceOfLeftBousfieldLocalization}{this Prop.}). Then this is [[equivalence of (∞,1)-categories|equivalent]] (\href{geometry+of+physics+--+categories+and+toposes#HoCombModCat}{this Def.}) to [[∞Grpd]] (\href{geometry+of+physics+--+categories+and+toposes#InfinityGroupoid}{this Example}), \begin{displaymath} \infty Grpd \;\simeq\; Sh_\infty(\mathcal{C})_{\mathbb{A}} \underoverset {\underset{\phantom{AA}\iota\phantom{AA}}{\hookrightarrow}} {\overset{L_{\mathbb{A}}}{\longleftarrow}} {\bot} Sh_\infty(\mathcal{C}) \;\; \in Ho(CombModCat) \end{displaymath} in that the ([[constant functor]] $\dashv$ [[limit]])-[[adjunction]] (\href{geometry+of+physics+--+categories+and+toposes#Limits}{this Def.}) \begin{equation} [\mathcal{C}^{op}, sSet_{Qu}]_{inj, loc, \mathbb{A}} \underoverset {\underset{ \underset{\longleftarrow}{\lim} }{\longrightarrow}} {\overset{ \phantom{AA}const\phantom{AA} }{\longleftarrow}} {\bot} sSet_{Qu} \;\;\;\; \in CombModCat \label{QuillenEquivalenceInABousfLocalization}\end{equation} is a [[Quillen equivalence]] (\href{geometry+of+physics+--+homotopy+types#QuillenEquivalence}{this Def.}). \end{prop} \begin{proof} First to see that \eqref{QuillenEquivalenceInABousfLocalization} is a [[Quillen adjunction]]: Since we have a [[simplicial Quillen adjunction]] before localization \begin{displaymath} [\mathcal{C}^{op}, sSet_{Qu}]_{inj} \underoverset {\underset{ \underset{\longleftarrow}{\lim} }{\longrightarrow}} {\overset{ \phantom{AA}const\phantom{AA} }{\longleftarrow}} {\bot} sSet_{Qu} \end{displaymath} (by \href{geometry+of+physics+--+categories+and+toposes#HomotopyLimitOfSimplicialSets}{this Example}) and since both [[model categories]] here are [[left proper model category|left proper]] [[simplicial model categories]] (by \href{geometry+of+physics+--+categories+and+toposes#SimplicialPresheavesIsProperCombinatorialSimplicial}{this Prop.} and \href{geometry+of+physics+--+categories+and+toposes#ExistenceOfLeftBousfieldLocalization}{this Prop.}), and since [[left Bousfield localization]] does not change the class of [[cofibrations]] (\href{geometry+of+physics+--+categories+and+toposes#BousfieldLocalizationOfModelCategories}{this Def.}) it is sufficient to show that $\underset{\longleftarrow}{\lim}$ preserves [[fibrant objects]] (by \href{geometry+of+physics+--+categories+and+toposes#RecognitionOfSimplicialQuillenAdjunction}{this Prop.}). But by assumption $\mathcal{C}$ has a [[terminal object]] $\ast = \mathbb{A}^0$, which is hence the [[initial object]] of $\mathcal{C}^{op}$, so that the [[limit]] operation is given just by evaluation on that object: \begin{displaymath} \underset{\longleftarrow}{\lim} \mathbf{X} \;=\; \mathbf{X}(\mathbb{A}^0) \,. \end{displaymath} Hence it is sufficient to see that an injectively fibrant simplicial presheaf $\mathbf{X}$ is objectwise a [[Kan complex]]. This is indeed the case, by \href{geometry+of+physics+--+categories+and+toposes#ModelCategoriesOfSimplicialPresheaves}{this Prop.}. To check that \eqref{QuillenEquivalenceInABousfLocalization} is actually a [[Quillen equivalence]], we check that the [[derived adjunction unit]] and [[derived adjunction counit]] are [[weak equivalences]]: For $X \in sSet$ any simplicial set (necessarily cofibrant), the [[derived adjunction unit]] is \begin{displaymath} X \overset{id_X}{\longrightarrow} const(X)(\mathbb{A}^0) \overset{ const(j_X)(\mathbb{A}^0) }{\longrightarrow} const(P X)(\mathbb{A}^0) \end{displaymath} where $X \overset{j_X}{\longrightarrow} P X$ is a [[fibrant replacement]] (\href{geometry+of+physics+--+categories+and+toposes#FibrantCofibrantReplacementFunctorToHomotopyCategory}{this Def.}). But $const(-)(\mathbb{A}^0)$ is clearly the [[identity functor]] and the plain adjunction unit is the [[identity morphism]], so that this composite is just $j_X$ itself, which is indeed a weak equivalence. For the other case, let $\mathbf{X} \in [\mathcal{C}^{op}, sSet_{Qu}]_{inj, loc, \mathbb{A}^1}$ be fibrant. This means (by \href{geometry+of+physics+--+categories+and+toposes#ExistenceOfLeftBousfieldLocalization}{this Prop.}) that $\mathbf{X}$ is fibrant in the injective [[model structure on simplicial presheaves]] as well as in the local model structure, and is a derived-$\mathbb{A}^1$-[[local object]] (\href{geometry+of+physics+--+categories+and+toposes#DerivedLocalObjects}{this Def.}), in that the [[derived hom-functor]] out of any $\mathbb{A}^n \times \mathbb{A}^1 \overset{p_1}{\longrightarrow} \mathbb{A}^n$ into $\mathbf{X}$ is a [[weak homotopy equivalence]]: \begin{displaymath} \mathbb{R}Hom( p_1 ) \;\colon\; \mathbb{R}Hom( \mathbb{A}^n , \mathbf{X}) \overset{\in W}{\longrightarrow} \mathbb{R}Hom( \mathbb{A}^n \times \mathbb{A}^1 , \mathbf{X}) \end{displaymath} But since $\mathbf{X}$ is fibrant, this derived hom is equivalent to the ordinary [[hom-functor]] (\href{geometry+of+physics+--+categories+and+toposes#HomsOutOfCofibrantIntoFibrantComputeHomotopyCategory}{this Lemma}), and hence with the [[Yoneda lemma]] (\href{geometry+of+physics+--+categories+and+toposes#YonedaLemma}{this Prop.}) we have that \begin{displaymath} \mathbf{X}(p_1) \;\colon\; \mathbf{X}(\mathbb{A}^n) \overset{\in W}{\longrightarrow} \mathbf{X}(\mathbb{A}^{n+1}) \end{displaymath} is a weak equivalence, for all $n \in \mathbb{N}$. By [[induction]] on $n$ this means that in fact \begin{displaymath} \mathbf{X}(\mathbb{A}^0) \overset{\in W}{\longrightarrow} \mathbf{X}(\mathbb{A}^n) \end{displaymath} is a weak equivalence for all $n \in \mathbb{N}$. But these are just the components of the [[adjunction counit]] \begin{displaymath} const (\mathbf{X}(\mathbb{A}^0)) \underoverset{\in W}{\epsilon}{\longrightarrow} \mathbf{X} \end{displaymath} which is hence also a weak equivalence. Hence for the [[derived adjunction counit]] \begin{displaymath} const (Q \mathbf{X})(\mathbb{A}^0) \overset{const(p_{\mathbf{X}}(\mathbb{A}^0))}{\longrightarrow} const (\mathbf{X}(\mathbb{A}^0)) \underoverset{\in W}{\epsilon}{\longrightarrow} \mathbf{X} \end{displaymath} to be a weak equivalence, it is now sufficient to see that the value of a [[cofibrant replacement]] $p_{\mathbf{X}}$ on $\mathbb{A}^0$ is a weak equivalence. But by definition of the weak equivalences of simplicial presheaves these are objectwise weak equivalences. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Fabien Morel]], [[Vladimir Voevodsky]], Def. 3.1 in \emph{$\mathbb{A}^1$-homotopy theory of schemes}, Publications Mathématiques de l'IHÉS, Volume 90 (1999), p. 45-143 (\href{http://www.numdam.org/item/?id=PMIHES_1999__90__45_0}{Numdam:PMIHES\_1999\_\_90\_\_45\_0} \href{http://www.math.uiuc.edu/K-theory/0305/}{K-Theory:0305} ) \end{itemize} For more references see also at \emph{[[motivic homotopy theory]]}. [[!redirects homotopy localization]] [[!redirects homotopy localizations]] [[!redirects homotopy localization at an object]] [[!redirects homotopy localizations at an object]] [[!redirects localization at an object]] [[!redirects localizations at an object]] [[!redirects localization at objects]] [[!redirects localizations at objects]] \end{document}