\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization of a module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_modules_over_rings}{For modules over rings}\dotfill \pageref*{for_modules_over_rings} \linebreak \noindent\hyperlink{for_chain_complexes}{For chain complexes}\dotfill \pageref*{for_chain_complexes} \linebreak \noindent\hyperlink{ForSpectra}{For spectra ($\mathbb{S}$-modules)}\dotfill \pageref*{ForSpectra} \linebreak \noindent\hyperlink{for_modules_over_rings_2}{For $\infty$-modules over $E_\infty$-rings}\dotfill \pageref*{for_modules_over_rings_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{eilenbergwatts_theorem}{Eilenberg-Watts theorem}\dotfill \pageref*{eilenbergwatts_theorem} \linebreak \noindent\hyperlink{relation_with_torsion_approximation_and_completion}{Relation with torsion approximation and completion}\dotfill \pageref*{relation_with_torsion_approximation_and_completion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{localization of a module} is the result of application of an [[additive functor|additive]] [[localization functor]] on a [[category of modules]] over some [[ring]] $R$. When $R$ is a [[commutative ring]] of functions, and under the \href{module#RelationToVectorBundlesInIntroduction}{interpretation of modules as generalized vector bundles} the \emph{localization} of a module corresponds to the restriction of the bundle to a subspace of its base space. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_modules_over_rings}{}\subsubsection*{{For modules over rings}}\label{for_modules_over_rings} For $R$ a (possibly noncommutative) unital ring, let $\mathcal{A} = R$[[Mod]] be the [[category]] $R$-[[modules]]. Here $R$ may be the [[structure sheaf]] of some [[ringed topos]] and accordingly the modules may be [[sheaves of modules]]. Consider a [[reflective localization]] functor \begin{displaymath} Q^* = Q^*_\Sigma \colon \mathcal{A}\to \Sigma^{-1}\mathcal{A} \end{displaymath} with [[right adjoint]] $Q_*$. The application of this functor to a [[module]] $M\in \mathcal{A}$ is some object $Q^*(M)$ in the localized category $\Sigma^{-1}\mathcal{A}$, which is up to isomorphism determined by its image $Q_* Q^*(M)$. The \textbf{localization map} is the component of the [[unit of an adjunction|unit of the adjunction]] (usually denoted by $i$, $j$ or $\iota$ in this setup) $\iota_M : M\to Q_* Q^*(M)$. Depending on an author or a context, we say that a (reflective) localization functor of category of modules is \textbf{flat} if either $Q^*$ is also left [[exact functor]], or more strongly that the composed endofunctor $Q_* Q^*$ is exact. For example, [[Gabriel localization]] is flat in the first, weak sense, and left or right Ore localization is flat in the second, stronger, sense. \hypertarget{for_chain_complexes}{}\subsubsection*{{For chain complexes}}\label{for_chain_complexes} \ldots{} Greenlees-May duality\ldots{} \hypertarget{ForSpectra}{}\subsubsection*{{For spectra ($\mathbb{S}$-modules)}}\label{ForSpectra} \begin{prop} \label{}\hypertarget{}{} Suppose that $L \colon Spectra \to Spectra$ is a [[smashing localization]] given by [[smash product]] with some [[spectrum]] $T$. Write $F$ for the [[homotopy fiber]] \begin{displaymath} F \longrightarrow \mathbb{S} \longrightarrow T \,. \end{displaymath} Then there is a [[fracture diagram]] of operations \begin{displaymath} \itexarray{ T \wedge (-) && \longleftarrow && [T,-] \\ & \nwarrow && \swarrow \\ && \mathbb{S} \\ & \swarrow & & \nwarrow \\ [F,-] && \longleftarrow && F \wedge (-) } \end{displaymath} where $[F,-]$ and $T \wedge (-) \colon Spectr \to Spectra$ are [[idempotent (∞,1)-monads]] and $[T,-]$, $[F,-]$ are idempotent $\infty$-comonad, the diagonals are [[homotopy fiber sequences]]. \end{prop} ([[Charles Rezk]], \href{http://mathoverflow.net/a/178316/381}{MO comment,August 2014}) \begin{example} \label{}\hypertarget{}{} For $T = S \mathbb{Z}[p^{-1}]$ the [[Moore spectrum]] of the [[integers]] [[localization of a ring|localized away from]] $p$, then \begin{displaymath} F = \Sigma^{-1} S (\mathbb{Z}[p^{-1}]/\mathbb{Z}) \to \mathbb{S} \to S \mathbb{Z}[p^{-1}] \end{displaymath} and hence \begin{itemize}% \item $\Sigma^{-1} S (\mathbb{Z}[p^{-1}]/\mathbb{Z}) \wedge (-)$ is $p$-[[torsion approximation]]; \item $[\Sigma^{-1} S (\mathbb{Z}[p^{-1}]/\mathbb{Z}),-]$ is $p$-[[completion of a module|completion]]; \item $S \mathbb{Z}[p^{-1}] \wedge (-)$ is localization away from $p$ ($p$-[[rationalization]]) \item $[T,-]$ is forming $p$-[[adic residual]]. \end{itemize} \begin{displaymath} \itexarray{ && localization\;away\;from\;\mathfrak{a} && \stackrel{}{\longrightarrow} && \mathfrak{a}\;adic\;residual \\ & \nearrow & & \searrow & & \nearrow && \searrow \\ && && X && && \\ & \searrow & & \nearrow & & \searrow && \nearrow \\ && formal\;completion\;at\;\mathfrak{a}\; && \longrightarrow && \mathfrak{a}\;torsion\;approximation } \,, \end{displaymath} \end{example} With (\hyperlink{Bousfield79}{Bousfield 79, prop.2.5}) \hypertarget{for_modules_over_rings_2}{}\subsubsection*{{For $\infty$-modules over $E_\infty$-rings}}\label{for_modules_over_rings_2} Let $A$ be an [[E-∞ ring]] and $\mathfrak{a} \subset \pi_0 A$ a [[generators and relations|finitely generated]] ideal of its underlying [[commutative ring]]. \begin{defn} \label{LocalInfinityModule}\hypertarget{LocalInfinityModule}{} An $A$-[[∞-module]] $N$ is an \emph{$\mathfrak{a}$-local module} if for every $\mathfrak{a}$-[[torsion module]] $T$ (def. \ref{TorsionInfinityModule}), the [[derived hom space]] \begin{displaymath} Hom_A(T,N) \simeq \ast \end{displaymath} is contractible. \end{defn} (\hyperlink{LurieCompletions}{Lurie ``Completions'', def. 4.1.9}). \begin{prop} \label{LocalizationAwayByColimit}\hypertarget{LocalizationAwayByColimit}{} For $\mathfrak{a} = (a)$ generated from a single element, then the \href{localization+of+a+commutative+ring#ForEInfinityRings}{localization of an (∞,1)-ring}-map $A \to A[a^{-1}]$ is given by the [[(∞,1)-colimit]] over the sequence of right-multiplication with $a$ \begin{displaymath} A[a^{-1}] \simeq \underset{\rightarrow}{\lim} ( A \stackrel{\cdot a}{\longrightarrow} A \stackrel{\cdot a}{\longrightarrow} A \stackrel{\cdot a}{\longrightarrow} \cdots ) \,. \end{displaymath} \end{prop} (\hyperlink{LurieCompletions}{Lurie ``Completions'', remark 4.1.11}) \begin{prop} \label{}\hypertarget{}{} The [[full sub-(∞,1)-category]] \begin{displaymath} A Mod_{\mathfrak{a}loc} \hookrightarrow A Mod \end{displaymath} of [[∞-modules]] [[localization of a module|local]] away from $\mathfrak{a}$ is [[reflective sub-(∞,1)-category|reflective]]. The reflector \begin{displaymath} \Pi_{\mathfrak{a}dR} \colon A Mod \longrightarrow A Mod_{\mathfrak{a}loc} \end{displaymath} is called \emph{localization}. \end{prop} \begin{prop} \label{}\hypertarget{}{} There is a [[natural transformation|natural]] [[homotopy fiber sequence]] \begin{displaymath} ʃ_{\mathfrak{a}} \longrightarrow id \longrightarrow ʃ_{\mathfrak{a}dR} \end{displaymath} relating $\mathfrak{a}$-[[torsion approximation]] on the left with $\mathfrak{a}$-localization on the right. \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{eilenbergwatts_theorem}{}\subsubsection*{{Eilenberg-Watts theorem}}\label{eilenbergwatts_theorem} By the [[Eilenberg-Watts theorem]], if $\mathcal{A}= R$[[Mod]] then the localization of a module \begin{displaymath} Q^*(M) = Q^*(R)\otimes_R M \end{displaymath} is given by forming the [[tensor product of modules]] with the localizatin of the ring $R$, regarded as a module over itself. If the localization is a left [[Ore localization]] or [[commutative localization]] at a set $S\subset R$ then $Q^*(R) = S^{-1} R$ is the [[localization of a ring|localization of the ring]] itself and hence in this case the localization of the module \begin{displaymath} Q^*(M) = S^{-1} R\otimes_R M \end{displaymath} is given by [[extension of scalars]] along the localization map $R \to S^{-1}R$ of the ring itself. In these cases there are also direct constructions of $Q^*(M)$ (not using to $Q^*(R)$) which give an isomorphic result, also denoted by $S^{-1}M$. \hypertarget{relation_with_torsion_approximation_and_completion}{}\subsubsection*{{Relation with torsion approximation and completion}}\label{relation_with_torsion_approximation_and_completion} [[!include arithmetic cohesion -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localization of an abelian group]] \item [[localization of a ring]], [[Ore localization]], [[Gabriel localization]], [[Cohn localization]] \item [[localization of a space]] (and of a [[spectrum]]) \item [[localization of a category]] (= localization functor) \item [[locally free module]] \end{itemize} \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Standard discussion over [[commutative rings]] is for instance in \begin{itemize}% \item Andreas Gathmann, \emph{Localization} ([[GathmannLocalization.pdf:file]]) \end{itemize} Discussion in the general case of [[noncommutative geometry]] is in \begin{itemize}% \item [[Z. ?koda]], \emph{Noncommutative localization in noncommutative geometry}, London Math. Society Lecture Note Series 330 (\href{http://www.maths.ed.ac.uk/~aar/books/nlat.pdf}{pdf}), ed. A. Ranicki; pp. 220--313, \href{http://arxiv.org/abs/math.QA/0403276}{math.QA/0403276} \end{itemize} Discussion in the context of [[spectra]] originates in \begin{itemize}% \item [[Aldridge Bousfield]], [[Daniel Kan]], \emph{[[Homotopy limits, completions and localizations]]}, Lecture Notes in Mathematics, Vol 304, Springer 1972 \item [[Aldridge Bousfield]], \emph{The localization of spectra with respect to homology} , Topology vol 18 (1979) (\href{http://www.uio.no/studier/emner/matnat/math/MAT9580/v12/undervisningsmateriale/bousfield-topology-1979.pdf}{pdf}) \item [[Dennis Sullivan]], \emph{Geometric topology: localization, periodicity and Galois symmetry}, volume 8 of K- Monographs in Mathematics. Springer, Dordrecht, 2005. The 1970 MIT notes, Edited and with a preface by [[Andrew Ranicki]] (\href{http://www.maths.ed.ac.uk/~aar/books/gtop.pdf}{pdf}) \end{itemize} Discussion in the context of [[higher algebra]] is in \begin{itemize}% \item [[Jacob Lurie]], section 4 of \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \end{itemize} [[!redirects localizations of a module]] [[!redirects localizations of modules]] \end{document}