\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization of a ring} \begin{quote}% This entry is about the general notion of localization of a possible noncommutative ring. For the more restrictive but more traditional notion of [[localization of a commutative ring]] see there. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{Terminology}{Localization ``at'' and ``away from''}\dotfill \pageref*{Terminology} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_noncommutative_rings}{For noncommutative rings}\dotfill \pageref*{for_noncommutative_rings} \linebreak \noindent\hyperlink{for_commutative_rings}{For commutative rings}\dotfill \pageref*{for_commutative_rings} \linebreak \noindent\hyperlink{for_rings}{For $E_k$-rings}\dotfill \pageref*{for_rings} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_a_modality_in_arithmetic_cohesion}{As a modality in arithmetic cohesion}\dotfill \pageref*{as_a_modality_in_arithmetic_cohesion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Given a (possibly noncommutative) unital [[ring]] $R$ there are many situations when certain elements or matrices can be inverted in a universal way obtaining a new ``localized'' ring $S^{-1}R$ equipped with a localization [[homomorphism]] $R\to S^{-1}R$ under which all elements in $S$ are mapped to multiplicatively invertible elements ([[units]]). The latter property must be modified for Cohn localization at multiplicative set of matrices. We can typically invert elements in a left or right Ore subset $S\subset R$ or much more generally some multiplicative set or matrices ([[Cohn localization]]) etc. There are also some specific localizations like Martindale localizations in ring theory. \hypertarget{Terminology}{}\subsubsection*{{Localization ``at'' and ``away from''}}\label{Terminology} The common terminology in algebra is as follows. For $S$ a set of [[primes]], ``localize at $S$'' means ``invert what is not divisible by $S$''; so for $p$ prime, localizing ``at $p$'' means considering only $p$-[[torsion subgroup|torsion]]. Adjoining inverses $[S^{-1}]$ is pronounced ``localized away from $S$''. Inverting a [[prime]] $p$ is localizing away from $p$, which means ignoring $p$-torsion. See also lecture notes such as (\hyperlink{Gathmann}{Gathmann}) and see at \emph{[[localization of a space]]} for more discussion of this. Evidently, this conflicts with more-categorial uses of ``localized''; ``inverting weak equivalences'' is called localization, by obvious analogy, and is written as ``localizing at weak equivalences''. This is confusing! It's also weird: since a ring is a one-object Ab-enriched category with morphisms ``multiply-by'', the localization-of-the-category $R$ ``at $p$'' (or its Ab-enriched version, if saying that is necessary) really means the localization-of-the-ring R ``away from p''. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_noncommutative_rings}{}\subsubsection*{{For noncommutative rings}}\label{for_noncommutative_rings} \begin{defn} \label{}\hypertarget{}{} The localization of a [[ring]] $R$ at a [[multiplicative subset]] $S$ is the [[commutative ring]] whose underlying [[set]] is the set of [[equivalence classes]] on $R \times S$ under the [[equivalence relation]] \begin{displaymath} (r_1, s_1) \sim (r_2, s_2) \;\;\Leftrightarrow\;\; \exists u \in S \; (r_1 s_2- r_2 s_1) u = 0 \;\in R \,. \end{displaymath} Write $r s^{-1}$ for the [[equivalence class]] of $(r,s)$. On this set, addition and multiplication is defined by \begin{displaymath} r_1 s_1^{-1} + r_2 s_2^{-1} \coloneqq (r_1 s_2 + r_2 s_1) (s_1 s_2)^{-1} \end{displaymath} \begin{displaymath} (r_1 s_1^{-1})(r_2 s_2^{-1}) \coloneqq r_1 r_2 (s_1 s_2)^{-1} \,. \end{displaymath} \end{defn} (e.g. [[The Stacks Project|Stacks Project, def. 10.9.1]]) \hypertarget{for_commutative_rings}{}\subsubsection*{{For commutative rings}}\label{for_commutative_rings} See \emph{[[localization of a commutative ring]]}. \hypertarget{for_rings}{}\subsubsection*{{For $E_k$-rings}}\label{for_rings} (\ldots{}) By the lifting property of etale morphisms for $E_k$-rings, see \href{étale+morphism+of+E-∞+rings#LocalizationOfRings}{here}. (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_a_modality_in_arithmetic_cohesion}{}\subsubsection*{{As a modality in arithmetic cohesion}}\label{as_a_modality_in_arithmetic_cohesion} Localization away from a suitably tame ideal may be understood as the [[dR-shape modality]] in the [[cohesion]] of [[E-infinity arithmetic geometry]]: [[!include arithmetic cohesion -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localization]], \item [[localization of abelian groups]] \item [[localization of a module]] \item [[localization of a commutative ring]] \item [[Cohn localization]], [[Ore localization]]. \item [[Bousfield localization of spectra]] \begin{itemize}% \item [[localization of a space]] (and of a [[spectrum]]) \item [[p-localization]], [[p-completion]] \end{itemize} \item [[completion of a ring]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A classical account of [[localization of commutative rings]] is in section 1 of \begin{itemize}% \item [[Dennis Sullivan]], \emph{Geometric topology: localization, periodicity and Galois symmetry}, volume 8 of K- Monographs in Mathematics. Springer, Dordrecht, 2005. The 1970 MIT notes, Edited and with a preface by [[Andrew Ranicki]] (\href{http://www.maths.ed.ac.uk/~aar/books/gtop.pdf}{pdf}) \end{itemize} Further reviews include \begin{itemize}% \item Andreas Gathmann, \emph{Localization} ([[GathmannLocalization.pdf:file]]) \item [[Joseph Neisendorfer]] \emph{A Quick Trip through Localization} (\href{https://www.math.rochester.edu/people/faculty/jnei/localization.pdf}{pdf}) \end{itemize} Discussion of the general concept in [[noncommutative geometry]] is in \begin{itemize}% \item [[Zoran ?koda]], \emph{Noncommutative localization in noncommutative geometry}, London Math. Society Lecture Note Series 330 (\href{http://www.maths.ed.ac.uk/~aar/books/nlat.pdf}{pdf}), ed. A. Ranicki; pp. 220--313, \href{http://arxiv.org/abs/math.QA/0403276}{math.QA/0403276}. \end{itemize} [[!redirects localizations of a ring]] [[!redirects localization of rings]] [[!redirects localizations of rings]] \end{document}