\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization of a space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{localization_of_a_space}{}\section*{{Localization of a space}}\label{localization_of_a_space} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{sets_of_primes}{Sets of primes}\dotfill \pageref*{sets_of_primes} \linebreak \noindent\hyperlink{local_groups}{Local groups}\dotfill \pageref*{local_groups} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{localization_of_spectra}{Localization of spectra}\dotfill \pageref*{localization_of_spectra} \linebreak \noindent\hyperlink{localization_of_nilpotent_spaces}{Localization of nilpotent spaces}\dotfill \pageref*{localization_of_nilpotent_spaces} \linebreak \noindent\hyperlink{localization_of_nonnilpotent_spaces}{Localization of non-nilpotent spaces}\dotfill \pageref*{localization_of_nonnilpotent_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToCompletion}{Relation to formal completion}\dotfill \pageref*{RelationToCompletion} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{in_chromatic_homotopy_theory}{In chromatic homotopy theory}\dotfill \pageref*{in_chromatic_homotopy_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{localization of a space} (really: [[homotopy type]], [[∞-groupoid]]) or [[spectrum]] with respect to some [[prime numbers]] is a [[homotopy theory|homotopical]] analogue of the notion of [[localization of a commutative ring]] (or rather of [[localization of a module]]), specifically the ring $\mathbb{Z}$ of [[integers]], with respect to some [[prime numbers]]. In good cases, at least, this localization acts on the [[homotopy groups|homotopy]] and/or [[homology groups]] as algebraic localization. (For spaces, there are multiple inequivalent notions of localization, although all agree on [[nilpotent spaces]].) Localization in this sense is closely related to [[Bousfield localization]]. The localization of spectra is a [[Bousfield localization of spectra]], while one of the constructions of localization of spaces is a Bousfield localization of model categories. The present notion of localization should not be confused with the [[completion of a space]], which is a different sort of Bousfield localization. \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} \hypertarget{sets_of_primes}{}\subsubsection*{{Sets of primes}}\label{sets_of_primes} For all of this page, \begin{itemize}% \item let $T$ be a [[set]] of [[prime numbers]], \item write $\neg T$ for the set of primes not in $T$. \end{itemize} \begin{defn} \label{}\hypertarget{}{} Write $\mathbb{Z}_T$ for the [[commutative ring|ring]] of [[integers]] [[localization of a commutative ring|localized]] by inverting all primes in $\neg T$, i.e. the subring of $\mathbb{Q}$ whose denominators are products of primes in $\neg T$. \end{defn} \begin{example} \label{}\hypertarget{}{} The most important cases are: \begin{itemize}% \item $T = \{p\}$ for a prime $p$. In this case, $T$-localization will be \textbf{localization at $p$} or \textbf{$p$-localization}. \item $T = \neg \{p\}$, the set of all primes except $p$. In this case, $T$-localization will be \textbf{localization away from $p$}. \item $T = \emptyset$. In this case, $T$-localization will be \textbf{[[rationalization]]}. \end{itemize} In these cases: \begin{itemize}% \item $\mathbb{Z}_\emptyset = \mathbb{Q}$ is the [[rational numbers]]; \item $\mathbb{Z}_{\neg\{p\}} = \mathbb{Z}[\frac{1}{p}]$; \item $\mathbb{Z}_{\{p\}} = \mathbb{Z}_{(p)}$ is the integers localized at the [[prime ideal]] $(p)$. \end{itemize} \end{example} \begin{remark} \label{}\hypertarget{}{} The analogous theory of the [[completion of a space]] involves the [[cyclic groups]] $\mathbb{Z}/p\mathbb{Z}$ -- written $\mathbb{F}_p$ when regarded as a [[finite field]] -- and/or the [[p-adic integers]] $\mathbb{Z}_p$ instead of $\mathbb{Z}_T$ (e.g. \hyperlink{LurieProper}{Lurie ``Proper morphisms'', section 4}). For the relation of that to completion see remark \ref{RelationToCompletion} below. Hence beware the subtle but crucial difference in what a subscript means, depending on which symbol is being subscribed and whether there are parenthesis or not: \begin{itemize}% \item $\mathbb{Z}_{(p)}$: inverting all primes except $p$; \item $\mathbb{F}_p$: quotient by $p$; \item $\mathbb{Z}_p$: [[formal completion]] at $p$. \end{itemize} \end{remark} \hypertarget{local_groups}{}\subsubsection*{{Local groups}}\label{local_groups} \begin{defn} \label{TLocalGroup}\hypertarget{TLocalGroup}{} A [[group]] $G$ is said to be \textbf{$T$-local} if the $p^{th}$ power map $G\to G$ is a bijection for all $p\in \neg T$. \end{defn} \begin{prop} \label{CharacterizationOfAbelianLocalGroups}\hypertarget{CharacterizationOfAbelianLocalGroups}{} If $G$ is [[abelian group|abelian]], then this map is a group [[homomorphism]] and is generally written additively as multiplication by $p$. In this case the following are equivalent: \begin{itemize}% \item $G$ is $T$-local; \item $G$ admits a structure of $\mathbb{Z}_T$-[[module]] (necessarily unique); \item The [[tensor product]] $G\otimes \mathbb{Z}/p\mathbb{Z}$ with the [[cyclic group]] of order $p$ is equal to zero for all $p\in\neg T$. \end{itemize} \end{prop} \begin{prop} \label{}\hypertarget{}{} The second characterization in prop. \ref{CharacterizationOfAbelianLocalGroups} implies that $T$-local abelian groups are [[reflective subcategory|reflective]] in [[Ab]]: the reflection is the [[extension of scalars]] functor $(\mathbb{Z}_T \otimes -)$. In fact, $T$-local nonabelian groups are also reflective in [[Grp]], but the construction is less pretty. \end{prop} \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{localization_of_spectra}{}\subsubsection*{{Localization of spectra}}\label{localization_of_spectra} \begin{defn} \label{TLocalSpectrum}\hypertarget{TLocalSpectrum}{} A [[spectrum]] $X$ is called \textbf{$T$-local} (or $\mathbb{Z}_T$-local, if there is potential for confusion) if its [[homotopy groups]] are $T$-local abelian groups, def. \ref{TLocalGroup}. The \textbf{$T$-localization} of a spectrum is its [[reflective sub-(infinity,1)-category|reflection]] into $T$-local spectra. \end{defn} \begin{remark} \label{}\hypertarget{}{} The $T$-localization, def. \ref{TLocalSpectrum}, may be constructed as the [[Bousfield localization of spectra]] with respect to the [[Moore spectrum]] $S(\mathbb{Z}_T)$ (e.g. \hyperlink{Bauer11}{Bauer 11, Example 1.7}). It can also be constructed as a [[Bousfield localization of model categories]] where we invert the maps that induce an isomorphism on [[generalized homology]] with [[coefficients]] in $H \mathbb{Z}_T$; these are called \textbf{$\mathbb{Z}_T$-homology isomorphisms}. See at \emph{[[homology localization]]}. \end{remark} \hypertarget{localization_of_nilpotent_spaces}{}\subsubsection*{{Localization of nilpotent spaces}}\label{localization_of_nilpotent_spaces} The presence of the nonabelian group $\pi_1$ makes the theory of localization of unstable spaces more subtle than that of spectra. If spaces are [[simply connected]], of course, then this is not a problem. More generally, it suffices to consider [[simple spaces]]: those where $\pi_1$ is abelian and acts trivially on the higher homotopy groups. Even more generally, it suffices to consider [[nilpotent spaces]], whose definition is more complicated; the reader is encouraged to think about simple or even simply connected spaces. For a nilpotent space $Z$, the following conditions are equivalent. When they hold, we say that $Z$ is \textbf{$T$-local}. (See \hyperlink{MayPonto}{May-Ponto, Theorem 6.1.1}.) \begin{enumerate}% \item Whenever $X\to Y$ induces an isomorphism on homology with $\mathbb{Z}_T$-coefficients, the induced map $[Y,Z] \to [X,Z]$ is a bijection. \item Each [[homotopy group]] $\pi_n(Z)$ is a $T$-local group. \item Each [[homology group]] $H_n(Z,\mathbb{Z})$ is a $T$-local group. \end{enumerate} For a general nilpotent space $X$, the following properties of a map $\phi:X\to Y$, with $Y$ nilpotent and $T$-local, are equivalent. Such a map exists and is unique up to homotopy, and we call it the \textbf{$T$-localization} of $X$ at $T$. (See \hyperlink{MayPonto}{May-Ponto, Theorem 6.1.2}.) \begin{enumerate}% \item The induced map $[Y,Z] \to [X,Z]$ is a bijection for all $T$-local nilpotent spaces $Z$. \item $\phi$ induces an isomorphism on homology with $\mathbb{Z}_T$-coefficients. \item The induced map $\pi_n(X) \to \pi_n(Y)$ is an algebraic $T$-localization for all $n$. \item The induced map $H_n(X,\mathbb{Z}) \to H_n(Y,\mathbb{Z})$ is an algebraic $T$-localization for all $n$. \end{enumerate} \hypertarget{localization_of_nonnilpotent_spaces}{}\subsubsection*{{Localization of non-nilpotent spaces}}\label{localization_of_nonnilpotent_spaces} For non-nilpotent spaces, there are multiple inequivalent definitions of localization (see \hyperlink{MayPonto}{May-Ponto, Remark 19.3.11}). For instance: \begin{itemize}% \item One can do a [[Bousfield localization of model categories]] with respect to the class of $\mathbb{Z}_T$-homology isomorphisms. In this case, the ``$T$-local spaces'' are those $Z$ such that $[Y,Z] \to [X,Z]$ is an isomorphism for all $\mathbb{Z}_T$-homology isomorphisms $X\to Y$ (the first characterization of $T$-local nilpotent spaces above). \item One can construct a [[totalization]] of the [[cosimplicial object]] induced by the ``free simplicial $\mathbb{Z}_T$-module'' monad. This construction is due to \hyperlink{BousfieldKan72}{Bousfield-Kan}. \item One can do a [[Bousfield localization of model categories]] with respect to the maps $p:S^1\to S^1$ for all $p\in \neg T$. This construction is due to \hyperlink{CasacubertaPeschke}{Casacuberta-Peschke}. In this case, the ``$T$-local spaces'' are those such that $\pi_1(X)$ is a $T$-local group and acts ``$T$-[[p-local module|locally]]'' on each $\pi_n(X)$. \end{itemize} One can of course state the other two characterizations of ``$T$-local space'' from the nilpotent case even in the non-nilpotent case, as is done by \hyperlink{Sullivan70}{Sullivan}, but these characterizations are no longer equivalent to the first one, and it is not clear whether corresponding ``localizations'' exist. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToCompletion}{}\subsubsection*{{Relation to formal completion}}\label{RelationToCompletion} \begin{remark} \label{RelationToCompletion}\hypertarget{RelationToCompletion}{} \textbf{(relation to completion)} A $\neg\{p\}$-local spectrum is also called \textbf{$\mathbb{Z}/p\mathbb{Z}$-acyclic}. According to the general theory of [[Bousfield localization of spectra]], they are ``dual'' to the ``$\mathbb{Z}/p\mathbb{Z}$-local spectra'', in the sense that $X$ is $\mathbb{Z}/p\mathbb{Z}$-local if every map $Y \to X$ out of a $\mathbb{Z}/p\mathbb{Z}$-acyclic $Y$ is [[null homotopy|null homotopic]]. $\mathbb{Z}/p\mathbb{Z}$-local spectra are also known as \emph{$p$-complete} spectra, and are the [[Bousfield localization of spectra]] at the [[Moore spectrum]] $S \mathbb{Z}/p\mathbb{Z}$ (e.g. \hyperlink{Bauer11}{Bauer 11, Example 1.7}). This may be regarded as a consequence of the [[mod p Whitehead theorem]]. \end{remark} See (\hyperlink{MayPonto}{May-Ponto, example 19.2.3}, \hyperlink{Lurie}{Lurie, example 8},\hyperlink{LurieProper}{Lurie ``Proper morphisms'', section 4}). In summary: [[!include localization and completion -- table]] \begin{remark} \label{}\hypertarget{}{} In terms of [[arithmetic geometry]] this may be understood as follows: \begin{enumerate}% \item $\mathbb{F}_p = \mathbb{Z}/(p \mathbb{Z})$ is the [[ring of functions]] exactly on the point $(p)\in$ [[Spec(Z)]] \item $\mathbb{Z}_p$ is the functions on the [[formal neighbourhood]] of $(p)$. \item $\mathbb{Z}_{(p)}$ is the ring of functions defined on the open complement of the complement of $(p)$, hence on an [[open neighbourhood]]. \end{enumerate} So the localization at the Moore spectrum of one of these rings localizes to the formal neighbourhood of their support. For $\mathbb{F}_p$ the support is the closed point, and so the localization there is infinitesimally bigger than that, as given by the $p$-adic completion. On the other hand the support of $\mathbb{Z}_{(p)}$ is open and hence contains its own formal neighbourhood, so localizing here just gives the plain localization. \end{remark} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{itemize}% \item [[fracture theorem]] \end{itemize} \hypertarget{in_chromatic_homotopy_theory}{}\subsubsection*{{In chromatic homotopy theory}}\label{in_chromatic_homotopy_theory} Many of the basic constructions and theorems in [[chromatic homotopy theory]] apply to [[finite spectrum|finite]] $p$-local spectra, such as \begin{itemize}% \item [[telescopic localization]] \item [[periodicity theorem]] \item [[chromatic convergence theorem]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Brown-Peterson spectrum]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[p-completion]] \item [[finite homotopy type]], [[finite spectrum]] \item [[nilpotent homotopy type]] \item [[rational homotopy type]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dennis Sullivan]], \emph{Localization, Periodicity and Galois Symmetry} (The 1970 MIT notes) edited by [[Andrew Ranicki]], K-Monographs in Mathematics, Dordrecht: Springe (\href{http://www.maths.ed.ac.uk/~aar/surgery/gtop.pdf}{pdf}) \item [[Aldridge Bousfield]], [[Daniel Kan]], \emph{[[Homotopy limits, completions and localizations]]}, Lecture Notes in Mathematics, Vol 304, Springer 1972 \item [[Peter May]], [[Kate Ponto]], \emph{More concise algebraic topology: Localization, completion, and model categories} (\href{http://www.maths.ed.ac.uk/~aar/papers/mayponto.pdf}{pdf}) \item Carles Casacuberta and Georg Peschke, \emph{Localizing with respect to self maps of the circle} (\href{http://atlas.mat.ub.es/personals/casac/articles/cpes.pdf}{pdf}). \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, Lecture series 2010, Lecture 20 \emph{Bousfield localization} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture20.pdf}{pdf}) \item [[Tilman Bauer]], \emph{Bousfield localization and the Hasse square} (\href{http://math.mit.edu/conferences/talbot/2007/tmfproc/Chapter09/bauer.pdf}{pdf}) \item [[Jacob Lurie]], section 4 of \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Localization_of_a_topological_space}{Localization of a topological space}} \end{itemize} [[!redirects p-localization]] [[!redirects p-localizations]] [[!redirects p-localisation]] [[!redirects p-localisations]] [[!redirects p-local]] [[!redirects p-locally]] [[!redirects p-local spectrum]] [[!redirects p-local spectra]] [[!redirects p-local space]] [[!redirects p-local spaces]] [[!redirects p-local homotopy type]] [[!redirects p-local homotopy types]] \end{document}