\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{localization of abelian groups} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ClassicalLocalizationOfAbelianGroups}{Classical localization at/away from primes}\dotfill \pageref*{ClassicalLocalizationOfAbelianGroups} \linebreak \noindent\hyperlink{FormalCompletionOfAbelianGroups}{Formal completion at primes}\dotfill \pageref*{FormalCompletionOfAbelianGroups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The general concept of [[localization]] applied to the ([[derived category|derived]]) [[category of abelian groups]] yield the concept of \emph{localization of abelian groups}. The two main examples are \begin{enumerate}% \item classical localization at/aways from primes; \item completion at a prime \end{enumerate} at [[prime numbers]] $p$. Here ``classical $p$-localization'' is localization at the morphism $0 \to \mathbb{Z}/p\mathbb{Z}$, while $p$-completion is localization at the morphism $0 \to \mathbb{Z}[p^{-1}]$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{remark} \label{ExtAb}\hypertarget{ExtAb}{} Recall that [[Ext]]-groups $\Ext^\bullet(A,B)$ between [[abelian groups]] $A, B \in$ [[Ab]] are concentrated in degrees 0 and 1 (\href{free+resolution#AbelianGroupHasFreeResolutionOfLength2}{prop.}). Since \begin{displaymath} Ext^0(A,B) \simeq Hom(A,B) \end{displaymath} is the plain [[hom-functor]], this means that there is only one possibly non-vanishing Ext-group $Ext^1$, therefore often abbreviated to just ``$Ext$'': \begin{displaymath} Ext(A,B) \coloneqq Ext^1(A,B) \,. \end{displaymath} \end{remark} \begin{defn} \label{AbelianGroupLocal}\hypertarget{AbelianGroupLocal}{} Let $K$ be an [[abelian group]]. Then an [[abelian group]] $A$ is called \textbf{$K$-local} if all the [[Ext]]-groups from $K$ to $A$ vanish: \begin{displaymath} Ext^\bullet(K,A) \simeq 0 \end{displaymath} hence equivalently (remark \ref{ExtAb}) if \begin{displaymath} Hom(K,A) \simeq 0 \;\;\;\;\; and \;\;\;\;\; Ext(K,A) \simeq 0 \,. \end{displaymath} A [[homomorphism]] of abelian groups $f \colon B \longrightarrow C$ is called \textbf{$K$-local} if for all $K$-local groups $A$ the function \begin{displaymath} Hom(f,A) \;\colon\; Hom(B,A) \longrightarrow Hom(A,A) \end{displaymath} is a [[bijection]]. \begin{quote}% (\textbf{Beware} that here it would seem more natural to use $Ext^\bullet$ instead of $Hom$, but we do use $Hom$. See (\hyperlink{Neisendorfer08}{Neisendorfer 08, remark 3.2}). \end{quote} A homomorphism of abelian groups \begin{displaymath} \eta \;\colon\; A \longrightarrow L_K A \end{displaymath} is called a \textbf{$K$-localization} if \begin{enumerate}% \item $L_K A$ is $K$-local; \item $\eta$ is a $K$-local morphism. \end{enumerate} \end{defn} We now discuss two classes of examples of localization of abelian groups \begin{enumerate}% \item \emph{\hyperlink{ClassicalLocalizationOfAbelianGroups}{Classical localization at/away from primes}}; \item \emph{\hyperlink{FormalCompletionOfAbelianGroups}{Formal completion at primes}}. \end{enumerate} \hypertarget{ClassicalLocalizationOfAbelianGroups}{}\paragraph*{{Classical localization at/away from primes}}\label{ClassicalLocalizationOfAbelianGroups} For $n \in \mathbb{N}$, write $\mathbb{Z}/n\mathbb{Z}$ for the [[cyclic group]] of [[order of a group|order]] $n$. \begin{lemma} \label{OutOfCyclicGroupExt1}\hypertarget{OutOfCyclicGroupExt1}{} For $n \in \mathbb{N}$ and $A \in Ab$ any [[abelian group]], then \begin{enumerate}% \item the [[hom-object|hom-group]] out of $\mathbb{Z}/n\mathbb{Z}$ into $A$ is the $n$-[[torsion subgroup]] of $A$ \begin{displaymath} Hom(\mathbb{Z}/n\mathbb{Z}, A) \simeq \{ a \in A \;\vert\; p \cdot a = 0 \} \end{displaymath} \item the first [[Ext]]-group out of $\mathbb{Z}/n\mathbb{Z}$ into $A$ is \begin{displaymath} Ext^1(\mathbb{Z}/n\mathbb{Z},A) \simeq A/n A \,. \end{displaymath} \end{enumerate} \end{lemma} \begin{proof} Regarding the first item: Since $\mathbb{Z}/p\mathbb{Z}$ is generated by its element 1 a morphism $\mathbb{Z}/p\mathbb{Z} \to A$ is fixed by the image $a$ of this element, and the only relation on 1 in $\mathbb{Z}/p\mathbb{Z}$ is that $p \cdot 1 = 0$. Regarding the second item: Consider the canonical [[free resolution]] \begin{displaymath} 0 \to \mathbb{Z} \overset{p \cdot (-)}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z} \to 0 \,. \end{displaymath} By the general discusson of [[derived functors in homological algebra]] this exhibits the [[Ext]]-group in degree 1 as part of the following [[short exact sequence]] \begin{displaymath} 0 \to Hom(\mathbb{Z},A) \overset{Hom(n\cdot(-),A)}{\longrightarrow} Hom(\mathbb{Z}, A) \longrightarrow Ext^1(\mathbb{Z}/n\mathbb{Z},A) \to 0 \,, \end{displaymath} where the morphism on the left is equivalently $A \overset{n \cdot (-)}{\to} A$. \end{proof} \begin{example} \label{}\hypertarget{}{} An [[abelian group]] $A$ is $\mathbb{Z}/p\mathbb{Z}$-local precisely if the operation \begin{displaymath} p \cdot (-) \;\colon\; A \longrightarrow A \end{displaymath} of multiplication by $p$ is an [[isomorphism]], hence if ``$p$ is invertible in $A$''. \end{example} \begin{proof} By the first item of lemma \ref{OutOfCyclicGroupExt1} we have \begin{displaymath} Hom(\mathbb{Z}/p\mathbb{Z}, A) \simeq \{ a \in A \;\vert\; p \cdot a = 0 \} \end{displaymath} By the second item of lemma \ref{OutOfCyclicGroupExt1} we have \begin{displaymath} Ext^1(\mathbb{Z}/p\mathbb{Z},A) \simeq A/p A \,. \end{displaymath} Hence by def. \ref{AbelianGroupLocal} $A$ is $\mathbb{Z}/p\mathbb{Z}$-local precisely if \begin{displaymath} \{ a \in A \;\vert\; p \cdot a = 0 \} \simeq 0 \end{displaymath} and if \begin{displaymath} A / p A \simeq 0 \,. \end{displaymath} Both these conditions are equivalent to multiplication by $p$ being invertible. \end{proof} \begin{defn} \label{InvertingPrimes}\hypertarget{InvertingPrimes}{} For $J \subset \mathbb{N}$ a set of [[prime numbers]], consider the [[direct sum]] $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$ of [[cyclic groups]] of [[order of a group|order]] $p$. The operation of $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$-localization of abelian groups according to def. \ref{AbelianGroupLocal} is called \textbf{inverting the primes} in $J$. Specifically \begin{enumerate}% \item for $J = \{p\}$ a single prime then $\mathbb{Z}/p\mathbb{Z}$-localization is called \textbf{localization away from $p$}; \item for $J$ the set of all primes except $p$ then $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$-localization is called \textbf{localization at $p$;} \item for $J$ the set of all primes, then $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$-localizaton is called \textbf{[[rationalization]]}.. \end{enumerate} \end{defn} \begin{defn} \label{LocalizationOfIntegersAtSetOfPrimes}\hypertarget{LocalizationOfIntegersAtSetOfPrimes}{} For $J \subset Primes \subset \mathbb{N}$ a [[set]] of [[prime numbers]], then \begin{displaymath} \mathbb{Z}[J^{-1}] \hookrightarrow \mathbb{Q} \end{displaymath} denotes the [[subgroup]] of the [[rational numbers]] on those elements which have an expression as a fraction of natural numbers with denominator a product of elements in $J$. This is the abelian group underlying the [[localization of a commutative ring]] of the ring of integers at the set $J$ of primes. If $J = Primes - \{p\}$ is the set of all primes \emph{except} $p$ one also writes \begin{displaymath} \mathbb{Z}_{(p)} \coloneqq \mathbb{Z}[Primes - \{p\}] \,. \end{displaymath} Notice the parenthesis, to distinguish from the notation $\mathbb{Z}_{p}$ for the [[p-adic integers]] (def. \ref{pAdicIntegers} below). \end{defn} \begin{remark} \label{ClassicalLocalizationSeenFromSpecZ}\hypertarget{ClassicalLocalizationSeenFromSpecZ}{} The terminology in def. \ref{InvertingPrimes} is motivated by the following perspective of [[arithmetic geometry]]: Generally for $R$ a [[commutative ring]], then an $R$-[[module]] is equivalently a [[quasicoherent sheaf]] on the [[spectrum of a commutative ring|spectrum of the ring]] $Spec(R)$. In the present case $R = \mathbb{Z}$ is the [[integers]] and [[abelian groups]] are identified with $\mathbb{Z}$-modules. Hence we may think of an abelian group $A$ equivalently as a [[quasicoherent sheaf]] on [[Spec(Z)]]. The ``[[ring of functions]]'' on [[Spec(Z)]] is the integers, and a point in $Spec(\mathbb{Z})$ is labeled by a [[prime number]] $p$, thought of as generating the ideal of functions on [[Spec(Z)]] which vanish at that point. The [[residue field]] at that point is $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Inverting a prime means [[forcing]] $p$ to become invertible, which, by this characterization, it is precisely \emph{away} from that point which it labels. The localization of an abelian group at $\mathbb{Z}/p\mathbb{Z}$ hence corresponds to the restriction of the corresponding quasicoherent sheaf over $Spec(\mathbb{Z})$ to the complement of the point labeled by $p$. Similarly localization \emph{at} $p$ is localization away from all points except $p$. See also at \emph{[[function field analogy]]} for more on this. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $J \subset \mathbb{N}$ a set of [[prime numbers]], a homomorphism of abelian groups $f \;\colon\; A \lookrightarrow B$ is local (def. \ref{AbelianGroupLocal}) with respect to $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$ (def. \ref{InvertingPrimes}) if under [[tensor product of abelian groups]] with $\mathbb{Z}[J^{-1}]$ (def. \ref{LocalizationOfIntegersAtSetOfPrimes}) it becomes an [[isomorphism]] \begin{displaymath} f \otimes \mathbb{Z}[J^{-1}] \;\colon\; X \otimes \mathbb{Z}[J^{-1}] \overset{\simeq}{\longrightarrow} Y \otimes \mathbb{Z}[J^{-1}] \,. \end{displaymath} Moreover, for $A$ any abelian group then its $\underset{p \in J}{\oplus} \mathbb{Z}/p\mathbb{Z}$-localization exists and is given by the canonical projection morphism \begin{displaymath} A \longrightarrow A \otimes \mathbb{Z}[J^{-1}] \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Neisendorfer08}{Neisendorfer 08, theorem 4.2}) \hypertarget{FormalCompletionOfAbelianGroups}{}\paragraph*{{Formal completion at primes}}\label{FormalCompletionOfAbelianGroups} We have seen above in remark \ref{ClassicalLocalizationSeenFromSpecZ} that classical localization of abelian groups at a prime number is geometrically interpreted as restricting a [[quasicoherent sheaf]] over [[Spec(Z)]] to a single point, the point that is labeled by that prime number. Alternatively one may restrict to the ``infinitesimal neighbourhood'' of such a point. Technically this is called the \emph{[[formal neighbourhood]]}, because its ring of functions is, by definition, the ring of [[formal power series]] (regarded as an [[adic ring]] or [[pro-ring]]). The corresponding operation on abelian groups is accordingly called \emph{[[formal completion]]} or \emph{[[adic completion]]} or just \emph{completion}, for short, of abelian groups. It turns out that if the abelian group is [[finitely generated object|finitely generated]] then the operation of [[p-completion]] coincides with an operation of \emph{localization} in the sense of def. \ref{AbelianGroupLocal}, namely localization at the [[p-primary group|p-primary component]] $\mathbb{Z}(p^\infty)$ of the group $\mathbb{Q}/\mathbb{Z}$ (def. \ref{ZpInfinity} below). On the one hand this equivalence is useful for deducing some key properties of [[p-completion]], this we discuss below. On the other hand this situation is a shadow of the relation between [[localization of spectra]] and [[nilpotent completion of spectra]], which is important for characterizing the convergence properties of [[Adams spectral sequences]]. \begin{defn} \label{AdicCompletionOfAbelingGroups}\hypertarget{AdicCompletionOfAbelingGroups}{} For $p$ a [[prime number]], then the \textbf{[[p-adic completion]]} of an [[abelian group]] $A$ is the abelian group given by the [[limit]] \begin{displaymath} A^\wedge_p \coloneqq \underset{\longleftarrow}{\lim} \left( \cdots \longrightarrow A / p^3 A \longrightarrow A / p^2 A \longrightarrow A/p A \right) \,, \end{displaymath} where the morphisms are the evident [[quotient]] morphisms. With these understood we often write \begin{displaymath} A^\wedge_p \coloneqq \underset{\longleftarrow}{\lim}_n A/p^n A \end{displaymath} for short. Notice that here the indexing starts at $n = 1$. \end{defn} \begin{example} \label{pAdicIntegers}\hypertarget{pAdicIntegers}{} The [[p-adic completion]] (def. \ref{AdicCompletionOfAbelingGroups}) of the [[integers]] $\mathbb{Z}$ is called the \textbf{[[p-adic integers]]}, often written \begin{displaymath} \mathbb{Z}_p \coloneqq \mathbb{Z}^\wedge_p \coloneqq \underset{\longleftarrow}{\lim}_n \mathbb{Z}/p^n \mathbb{Z} \,, \end{displaymath} which is the original example that gives the general concept its name. With respect to the canonical [[ring]]-structure on the integers, of course $p \mathbb{Z}$ is a prime ideal. Compare this to the ring $\mathcal{O}_{\mathbb{C}}$ of [[holomorphic functions]] on the [[complex plane]]. For $x \in \mathbb{C}$ any point, it contains the prime ideal generated by $(z-x)$ (for $z$ the canonical [[coordinate]] function on $\mathbb{z}$). The [[formal power series ring]] $\mathbb{C}[ [(z.x)] ]$ is the [[adic completion]] of $\mathcal{O}_{\mathbb{C}}$ at this ideal. It has the interpretation of functions defined on a [[formal neighbourhood]] of $X$ in $\mathbb{C}$. Analogously, the [[p-adic integers]] $\mathbb{Z}_p$ may be thought of as the functions defined on a [[formal neighbourhood]] of the point labeled by $p$ in [[Spec(Z)]]. \end{example} \begin{lemma} \label{pAdicIntegersAspExtensionofFpByThemselves}\hypertarget{pAdicIntegersAspExtensionofFpByThemselves}{} There is a [[short exact sequence]] \begin{displaymath} 0 \to \mathbb{Z}_p \overset{p \cdot (-)}{\longrightarrow} \mathbb{Z}_p \longrightarrow \mathbb{Z}/p\mathbb{Z} \to 0 \,. \end{displaymath} \end{lemma} \begin{proof} Consider the following [[commuting diagram]] \begin{displaymath} \itexarray{ \vdots && \vdots && \vdots \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p^3\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^4 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p^2\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^3 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^2 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ 0 &\longrightarrow& \mathbb{Z}/p\mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} } \,. \end{displaymath} Each horizontal sequence is exact. Taking the [[limit]] over the vertical sequences yields the sequence in question. Since limits commute over limits, the result follows. \end{proof} We now consider a concept of $p$-completion that is in general different from def. \ref{AdicCompletionOfAbelingGroups}, but turns out to coincide with it in [[finitely generated object|finitely generated]] abelian groups. \begin{defn} \label{pInvertedInZ}\hypertarget{pInvertedInZ}{} For $p$ a [[prime number]], write \begin{displaymath} \mathbb{Z}[1/p] \coloneqq \underset{\longrightarrow}{\lim} \left( \mathbb{Z} \overset{p \cdot (-)}{\longrightarrow} \mathbb{Z} \overset{p \cdot (-)}{\longrightarrow} \mathbb{Z} \overset{}{\longrightarrow} \cdots \right) \end{displaymath} for the [[colimit]] (in [[Ab]]) over iterative applications of multiplication by $p$ on the [[integers]]. This is the [[abelian group]] generated by formal expressions $\frac{1}{p^k}$ for $k \in \mathbb{N}$, subject to the relations \begin{displaymath} (p \cdot n) \frac{1}{p^{k+1}} = n \frac{1}{p^k} \,. \end{displaymath} Equivalently it is the abelian group underlying the [[localization of a ring|ring localization]] $\mathbb{Z}[1/p]$. \end{defn} \begin{defn} \label{AbelianGrouppComplete}\hypertarget{AbelianGrouppComplete}{} For $p$ a [[prime number]], then localization of abelian groups (def. \ref{AbelianGroupLocal}) at $\mathbb{Z}[1/p]$ (def. \ref{pInvertedInZ}) is called \textbf{$p$-completion of abelian groups}. \end{defn} \begin{lemma} \label{CharacterizingpCompleteAbelianGroupsBypSequence}\hypertarget{CharacterizingpCompleteAbelianGroupsBypSequence}{} An [[abelian group]] $A$ is $p$-complete according to def. \ref{AbelianGrouppComplete} precisely if both the [[limit]] as well as the [[lim{\tt \symbol{94}}1]] of the sequence \begin{displaymath} \cdots \overset{}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \end{displaymath} vanishes: \begin{displaymath} \underset{\longleftarrow}{\lim} \left( \cdots \overset{}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \right) \simeq 0 \end{displaymath} and \begin{displaymath} \underset{\longleftarrow}{\lim}^1 \left( \cdots \overset{}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \overset{p}{\longrightarrow} A \right) \simeq 0 \,. \end{displaymath} \end{lemma} \begin{proof} By def. \ref{AbelianGroupLocal} the group $A$ is $\mathbb{Z}[1/p]$-local precisely if \begin{displaymath} Hom(\mathbb{Z}[1/p], A) \simeq 0 \;\;\;\;\;\;\; and \;\;\;\;\;\;\; Ext^1(\mathbb{Z}[1/p], A) \simeq 0 \,. \end{displaymath} Now use the colimit definition $\mathbb{Z}[1/p] = \underset{\longrightarrow}{\lim}_n \mathbb{Z}$ (def. \ref{pInvertedInZ}) and the fact that the [[hom-functor]] sends colimits in the first argument to limits to deduce that \begin{displaymath} \begin{aligned} Hom(\mathbb{Z}[1/p], A) & = Hom( \underset{\longrightarrow}{\lim}_n \mathbb{Z}, A ) \\ & \simeq \underset{\longleftarrow}{\lim}_n Hom(\mathbb{Z},A) \\ & \simeq \underset{\longleftarrow}{\lim}_n A \end{aligned} \,. \end{displaymath} This yields the first statement. For the second, use that for every [[cotower]] over abelian groups $B_\bullet$ there is a [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_n Hom(B_n, A) \longrightarrow Ext^1( \underset{\longrightarrow}{\lim}_n B_n, A ) \longrightarrow \underset{\longleftarrow}{\lim}_n Ext^1( B_n, A) \to 0 \end{displaymath} (by \href{Introduction+to+Stable+homotopy+theory+--+S#lim1AndExt1}{this lemma}). In the present case all $B_n \simeq \mathbb{Z}$, which is a [[free abelian group]], hence a [[projective object]], so that all the [[Ext]]-groups out of it vannish. Hence by exactness there is an isomorphism \begin{displaymath} Ext^1( \underset{\longrightarrow}{\lim}_n \mathbb{Z}, A ) \simeq \underset{\longleftarrow}{\lim}^1_n Hom(\mathbb{Z}, A) \simeq \underset{\longleftarrow}{\lim}^1_n A \,. \end{displaymath} This gives the second statement. \end{proof} \begin{example} \label{pPrimaryGroupsArePComplete}\hypertarget{pPrimaryGroupsArePComplete}{} For $p$ a [[prime number]], the [[p-primary group|p-primary]] [[cyclic groups]] of the form $\mathbb{Z}/p^n \mathbb{Z}$ are $p$-complete (def. \ref{AbelianGrouppComplete}). \end{example} \begin{proof} By lemma \ref{CharacterizingpCompleteAbelianGroupsBypSequence} we need to check that \begin{displaymath} \underset{\longleftarrow}{\lim} \left( \cdots \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \right) \simeq 0 \end{displaymath} and \begin{displaymath} \underset{\longleftarrow}{\lim}^1 \left( \cdots \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \overset{p}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \right) \simeq 0 \,. \end{displaymath} For the first statement observe that $n$ consecutive stages of the tower compose to the [[zero morphism]]. First of all this directly implies that the limit vanishes, secondly it means that the [[tower]] satisfies the [[Mittag-Leffler condition]] (\href{Introduction+to+Stable+homotopy+theory+--+S#MittagLefflerCondition}{def.}) and this implies that the $\lim^1$ also vanishes (\href{Introduction+to+Stable+homotopy+theory+--+S#Lim1VanihesUnderMittagLeffler}{prop.}). \end{proof} \begin{defn} \label{ZpInfinity}\hypertarget{ZpInfinity}{} For $p$ a [[prime number]], write \begin{displaymath} \mathbb{Z}(p^\infty) \coloneqq \mathbb{Z}[1/p]/\mathbb{Z} \end{displaymath} (the [[p-primary group|p-primary]] part of $\mathbb{Q}/\mathbb{Z}$), where $\mathbb{Z}[1/p] = \underset{\longrightarrow}{\lim}(\mathbb{Z}\overset{p}{\to} \mathbb{Z} \overset{p}{\to} \mathbb{Z} \to \cdots )$ from def. \ref{pInvertedInZ}. Since [[colimits]] commute over each other, this is equivalently \begin{displaymath} \mathbb{Z}(p^\infty) \simeq \underset{\longrightarrow}{\lim} ( 0 \hookrightarrow \mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}/p^2 \mathbb{Z} \hookrightarrow \cdots ) \,. \end{displaymath} \end{defn} \begin{theorem} \label{pCompletionOfAbelianGroupsByHomsOutOfZpinfinity}\hypertarget{pCompletionOfAbelianGroupsByHomsOutOfZpinfinity}{} For $p$ a [[prime number]], the $\mathbb{Z}[1/p]$-localization \begin{displaymath} A \longrightarrow L_{\mathbb{Z}[1/p]} A \end{displaymath} of an abelian group $A$ (def. \ref{pInvertedInZ}, def. \ref{AbelianGroupLocal}), hence the $p$-completion of $A$ according to def. \ref{AbelianGrouppComplete}, is given by the morphism \begin{displaymath} A \longrightarrow Ext^1( \mathbb{Z}(p^\infty), A ) \end{displaymath} into the first [[Ext]]-group into $A$ out of $\mathbb{Z}(p^\infty)$ (def. \ref{ZpInfinity}), which appears as the first [[connecting homomorphism]] $\delta$ in the [[long exact sequence]] of [[Ext]]-groups \begin{displaymath} 0 \to Hom(\mathbb{Z}(p^\infty),A) \longrightarrow Hom(\mathbb{Z}[1/p],A) \longrightarrow Hom(\mathbb{Z},A) \overset{\delta)}{\longrightarrow} Ext^1(\mathbb{Z}(p^\infty), A) \to \cdots \,. \end{displaymath} that is induced (via \href{derived+functor+in+homological+algebra#LongExactSequenceOfRightDerivedFunctorsFromShortExactSequence}{this prop.}) from the defining [[short exact sequence]] \begin{displaymath} 0 \to \mathbb{Z} \longrightarrow \mathbb{Z}[1/p] \longrightarrow \mathbb{Z}(p^\infty) \to 0 \end{displaymath} (def. \ref{ZpInfinity}). \end{theorem} e.g. (\hyperlink{Neisendorfer08}{Neisendorfer 08, p. 16}) \begin{prop} \label{}\hypertarget{}{} If $A$ is a [[finitely generated module|finitely generated]] [[abelian group]], then its $p$-completion (def. \ref{AbelianGrouppComplete}, for any [[prime number]] $p$) is equivalently its [[p-adic completion]] (def. \ref{AdicCompletionOfAbelingGroups}) \begin{displaymath} \mathbb{Z}[1/p] A \simeq A^\wedge_p \,. \end{displaymath} \end{prop} \begin{proof} By theorem \ref{pCompletionOfAbelianGroupsByHomsOutOfZpinfinity} the $p$-completion is $Ext^1(\mathbb{Z}(p^\infty),A)$. By def. \ref{ZpInfinity} there is a [[colimit]] \begin{displaymath} \mathbb{Z}(p^\infty) = \underset{\longrightarrow}{\lim} \left( \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2 \mathbb{Z} \to \mathbb{Z}/p^3 \mathbb{Z} \to \cdots \right) \,. \end{displaymath} Together this implies, by \href{Introduction+to+Stable+homotopy+theory+--+S#lim1AndExt1}{this lemma}, that there is a [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1 Hom(\mathbb{Z}/p^n \mathbb{Z},A) \longrightarrow X^\wedge_p \longrightarrow \underset{\longleftarrow}{\lim}_n Ext^1(\mathbb{Z}/p^n \mathbb{Z}, A) \to 0 \,. \end{displaymath} By lemma \ref{OutOfCyclicGroupExt1} the [[lim{\tt \symbol{94}}1]] on the left is over the $p^n$-[[torsion subgroups]] of $A$, as $n$ ranges. By the assumption that $A$ is finitely generated, there is a [[maximum]] $n$ such that all torsion elements in $A$ are annihilated by $p^n$. This means that the [[Mittag-Leffler condition]] (\href{Introduction+to+Stable+homotopy+theory+--+S#MittagLefflerCondition}{def.}) is satisfied by the [[tower]] of $p$-torsion subgroups, and hence the [[lim{\tt \symbol{94}}1]]-term vanishes (\href{Introduction+to+Stable+homotopy+theory+--+S#Lim1VanihesUnderMittagLeffler}{prop.}). Therefore by exactness of the above sequence there is an [[isomorphism]] \begin{displaymath} \begin{aligned} L_{\mathbb{Z}[1/p]}X & \simeq \underset{\longleftarrow}{\lim}_n Ext^1(\mathbb{Z}/p^n \mathbb{Z}, A) \\ & \simeq \underset{\longleftarrow}{\lim}_n A/p^n A \end{aligned} \,, \end{displaymath} where the second isomorphism is by lemma \ref{OutOfCyclicGroupExt1}. \end{proof} \begin{prop} \label{pDivisibleGroupsHaveVanishingpCompletion}\hypertarget{pDivisibleGroupsHaveVanishingpCompletion}{} If $A$ is a $p$-[[divisible group]] in that $A \overset{p \cdot (-)}{\longrightarrow} A$ is an [[isomorphism]], then its $p$-completion (def. \ref{AbelianGrouppComplete}) vanishes. \end{prop} \begin{proof} By theorem \ref{pCompletionOfAbelianGroupsByHomsOutOfZpinfinity} the localization morphism $\delta$ sits in a [[long exact sequence]] of the form \begin{displaymath} 0 \to Hom(\mathbb{Z}(p^\infty),A) \longrightarrow Hom(\mathbb{Z}[1/p],A) \overset{\phi}{\longrightarrow} Hom(\mathbb{Z},A) \overset{\delta}{\longrightarrow} Ext^1(\mathbb{Z}(p^\infty), A) \to \cdots \,. \end{displaymath} Here by def. \ref{pInvertedInZ} and since the [[hom-functor]] takes [[colimits]] in the first argument to [[limits]], the second term is equivalently the [[limit]] \begin{displaymath} Hom(\mathbb{Z}[1/p],A) \simeq \underset{\longleftarrow}{\lim} \left( \cdots \to A \overset{p \cdot (-)}{\longrightarrow} A \overset{p \cdot (-)}{\longrightarrow} A \right) \,. \end{displaymath} But by assumption all these morphisms $p \cdot (-)$ that the limit is over are [[isomorphisms]], so that the limit collapses to its first term, which means that the morphism $\phi$ in the above sequence is an [[isomorphism]]. But by exactness of the sequence this means that $\delta = 0$. \end{proof} \begin{cor} \label{}\hypertarget{}{} Let $p$ be a [[prime number]]. If $A$ is a [[finite abelian group]], then its $p$-completion (def. \ref{AbelianGrouppComplete}) is equivalently its [[p-primary group|p-primary part]]. \end{cor} \begin{proof} By the [[fundamental theorem of finite abelian groups]], $A$ is a finite [[direct sum]] \begin{displaymath} A \simeq \underset{i}{\oplus} \mathbb{Z}/p_i^{k_i}\mathbb{Z} \end{displaymath} of [[cyclic groups]] of [[order of a group|ordr]] $p_i^{k_1}$ for $p_i$ [[prime numbers]] and $k_i \in \mathbb{N}$ (\href{finite+abelian+group#FiniteAbelianGroupIsDirectSumOfCyclics}{thm.}). Since finite direct sums are equivalently [[products]] ([[biproducts]]: [[Ab]] is an [[additive category]]) this means that \begin{displaymath} Ext^1( \mathbb{Z}(p^\infty), A ) \simeq \underset{i}{\prod} Ext^1( \mathbb{Z}(p^\infty), \mathbb{Z}/p_i^{k_1}\mathbb{Z} ) \,. \end{displaymath} By theorem \ref{pCompletionOfAbelianGroupsByHomsOutOfZpinfinity} the $i$th factor here is the $p$-completion of $\mathbb{Z}/p_i^{k_i}\mathbb{Z}$, and since $p \cdot(-)$ is an isomorphism on $\mathbb{Z}/p_i^{k_i}\mathbb{Z}$ if $p_i \neq p$ (because its [[kernel]] evidently vanishes), prop. \ref{pDivisibleGroupsHaveVanishingpCompletion} says that in this case the factor vanishes, so that only the factors with $p_i = p$ remain. On these however $Ext^1(\mathbb{Z}(p^\infty),-)$ is the identity by example \ref{pPrimaryGroupsArePComplete}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localization of rings]] \item [[localization of a space]] \item [[Bousfield localization of spectra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Joseph Neisendorfer]] \emph{A Quick Trip through Localization}, in \emph{Alpine perspectives on algebraic topology}, Third Ariolla Conference 2008 (\href{https://www.math.rochester.edu/people/faculty/jnei/localization.pdf}{pdf}) \item [[Peter May]], [[Kate Ponto]], section 10.1 of \emph{More concise algebraic topology: Localization, completion, and model categories} (\href{http://www.maths.ed.ac.uk/~aar/papers/mayponto.pdf}{pdf}) \end{itemize} [[!redirects localization of an abelian group]] [[!redirects localizations of abelian groups]] \end{document}