\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally cartesian closed category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivalentCharacterizations}{Cartesian closure in terms of base change and dependent product}\dotfill \pageref*{EquivalentCharacterizations} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{RelationCartesianClosureBaseChangeInTypeTheory}{In type theory}\dotfill \pageref*{RelationCartesianClosureBaseChangeInTypeTheory} \linebreak \noindent\hyperlink{internal_logic}{Internal logic}\dotfill \pageref*{internal_logic} \linebreak \noindent\hyperlink{almost_local_cartesian_closure}{Almost local cartesian closure}\dotfill \pageref*{almost_local_cartesian_closure} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{locally cartesian closed category} is a [[category]] $C$ whose [[slice categories]] $C/x$ are all [[cartesian closed category|cartesian closed]]. If a locally cartesian closed category $C$ has a [[terminal object]], then $C$ is itself cartesian closed and in fact [[finitely complete category|has all finite limit]]s (because, cartesian products in $C/x$ are pullbacks in $C$); often this requirement is included in the definition. Equivalently, a locally cartesian category $C$ is a category with [[pullbacks]] (and a [[terminal object]], if required) such that each [[base change]] functor $f^*: C/y \to C/x$ has a [[right adjoint]] $\Pi_f$, called the \emph{[[dependent product]]}. (This equivalence is discussed in detail \hyperlink{EquivalentCharacterizations}{below}.) In particular, such pullbacks preserve all [[colimits]]. Therefore, if a locally cartesian closed category [[finitely cocomplete category|has finite colimits]], it is automatically a [[coherent category]] and in fact a [[Heyting category]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivalentCharacterizations}{}\subsubsection*{{Cartesian closure in terms of base change and dependent product}}\label{EquivalentCharacterizations} We show how the [[dependent product]] and the [[internal hom]] in the [[slice categories]] may be used to express each other. \hypertarget{in_category_theory}{}\paragraph*{{In category theory}}\label{in_category_theory} \begin{prop} \label{DependentProductImpliesLocalCartesinClosure}\hypertarget{DependentProductImpliesLocalCartesinClosure}{} Let $\mathcal{C}$ be a [[category]] with [[pullbacks]] that has all [[dependent products]] $\prod_\bullet$, equivalently that every morphism $f : E \to X$ in $\mathcal{C}$ induces an [[adjoint triple]] \begin{displaymath} \mathcal{C}_{/E} \stackrel{\overset{\sum_f}{\longrightarrow}}{\stackrel{\overset{f^*}{\longleftarrow}}{\underset{\prod_f}{\longrightarrow}}} \mathcal{C}_{/X} \,. \end{displaymath} Then the [[internal hom]] in a slice $\mathcal{C}_{/X}$ exists and is given by \begin{displaymath} [\langle E \stackrel{f}{\longrightarrow} X\rangle \; ,\; -]_{\mathcal{C}_{/X}} \simeq \prod_f \circ f^* \,. \end{displaymath} \end{prop} \begin{proof} By the discusson at \emph{[[overcategory]]-\href{overcategory#LimitsAndColimits}{Limits and colimits}} the product in the slice $\mathcal{C}_{/X}$ of two objects $\langle E_1 \stackrel{f_1}{\longrightarrow} X\rangle$ and $\langle E_2 \stackrel{f_2}{\longrightarrow} X\rangle$ is given by the [[pullback]] $f_1^* E_2 = f_2^* E_1$ in $\mathcal{C}$, regarded again as a morphism over $X$. More formally this means that the product with $\langle E \stackrel{f}{\to} X\rangle$ is given by the composite \begin{displaymath} (-) \times_{\mathcal{C}_{/X}} \langle E \stackrel{f}{\to} X\rangle \;\;\;:\;\;\; \mathcal{C}_{/X} \stackrel{f^*}{\to} \mathcal{C}_{/E} \stackrel{\sum_f}{\to} \mathcal{C}_{/X} \end{displaymath} of the pullback along $f$ with the [[dependent sum]] along $f$. By the above [[adjoint triple]] both these morphisms have [[right adjoints]] and so the composite of the right adjoints is the right adjoint of the composite, hence is the [[internal hom]]: \begin{displaymath} \mathcal{C}_{/X} \stackrel{\prod_f}{\leftarrow} \mathcal{C}_{/E} \stackrel{f^* }{\leftarrow} \mathcal{C}_{/X} \;\;\;:\;\;\; [\langle E\stackrel{f}{\to} X \rangle, -]_{\mathcal{C}_{/X}} \,. \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} In the slice category $Set/X$, the inner hom is explicitly given by \begin{displaymath} [\langle E \stackrel{f}{\to} X \rangle, \langle F \stackrel{g}{\to} X \rangle]_{Set/X} = \{ (x,h) | x \in X, h : f^{-1}(x) \to g^{-1}(x) \}. \end{displaymath} \end{example} \begin{prop} \label{DependentProductInTermsOfSliceInternalHom}\hypertarget{DependentProductInTermsOfSliceInternalHom}{} If for a [[category]] $\mathcal{C}$ every [[slice category]] is a [[cartesian closed category]], then for every morphism $f : X \to Y$ in $\mathcal{C}$ the [[dependent product]] $\prod_f$ exists and is given on an object $E \stackrel{p}{\to} X$ by the [[pullback]] \begin{displaymath} \itexarray{ \prod_f \langle E \stackrel{p}{\to} X\rangle &\to& [\langle X \stackrel{f}{\to}Y\rangle, \langle E \stackrel{p}{\to}X \stackrel{f}{\to} Y\rangle]_{\mathcal{C}_{/Y}} \\ \downarrow && \downarrow \\ Y &\stackrel{\bar id}{\to}& [\langle X \stackrel{f}{\to}Y \rangle,\langle X \stackrel{f}{\to}Y \rangle]_{\mathcal{C}_{/Y}} } \end{displaymath} in $\mathcal{C}_{/Y}$, where the bottom morphism is the [[adjunct]] of \begin{displaymath} Y \times_{\mathcal{C}_{/Y}} \langle X \stackrel{f}{\to} Y\rangle \simeq \langle X \stackrel{f}{\to}Y\rangle \stackrel{id}{\to} \langle X \stackrel{f}{\to}Y\rangle \,. \end{displaymath} \end{prop} \begin{proof} It is sufficient to check the $(f^* \dashv \prod_f)$-[[adjunction]] [[hom set]]-[[natural isomorphism]] \begin{displaymath} \mathcal{C}_{/Y}( \langle F \stackrel{}{\to} Y\rangle , \prod_f \langle E \stackrel{p}{\to} X\rangle) \simeq \mathcal{C}_{/X}(f^* \langle F \stackrel{}{\to} Y\rangle, \langle E \stackrel{p}{\to} X\rangle) \,, \end{displaymath} natural in $\langle F \stackrel{}{\to}Y \rangle$. Since the [[hom functor]] $\mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle, -)$ preserves [[limits]] and hence [[pullbacks]], the expression on the left is exhibited as the pullback \begin{displaymath} \itexarray{ \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle, \prod_f \langle E \stackrel{p}{\to} X\rangle) &\to& \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle, [\langle X \stackrel{f}{\to}Y \rangle,\langle E \stackrel{p}{\to}X \stackrel{f}{\to} Y\rangle]_{\mathcal{C}_{/Y}}) \\ \downarrow && \downarrow \\ * &\stackrel{}{\to}& \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle,[\langle X \stackrel{f}{\to}Y \rangle,\langle X \stackrel{f}{\to}Y \rangle]_{\mathcal{C}_{/Y}}) } \end{displaymath} in [[Set]]. Using the $((-) \times_{\mathcal{C}_{/Y}} \langle X \stackrel{f}{\to}Y\rangle \dashv [\langle X \stackrel{f}{\to}Y\rangle, -]_{\mathcal{C}_{/Y}})$-adjunction this is equivalently \begin{displaymath} \itexarray{ \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle, \prod_f \langle E \stackrel{p}{\to} X\rangle) &\to& \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle \times_{\mathcal{C}_{/Y}} \langle X \stackrel{f}{\to}Y \rangle, \langle E \stackrel{p}{\to}X \stackrel{f}{\to} Y\rangle) \\ \downarrow && \downarrow \\ * &\stackrel{}{\to}& \mathcal{C}_{/Y}(\langle F \stackrel{}{\to} Y\rangle \times_{\mathcal{C}_{/Y} }\langle X \stackrel{f}{\to}Y \rangle , \langle X \stackrel{f}{\to}Y \rangle) } \,. \end{displaymath} This pullback now manifestly computes $\mathcal{C}_{/X}(f^* \langle F \to Y\rangle, \langle E \stackrel{p}{\to} X\rangle)$. \end{proof} \begin{prop} \label{slicelcc}\hypertarget{slicelcc}{} If $C$ is locally cartesian closed (i.e., if every slice $C/X$ is cartesian closed), then every slice $C/X$ is also locally cartesian closed. \end{prop} \begin{proof} The slice of a slice is a slice, i.e., for every $f \colon X \to Y$ there is an equivalence \begin{displaymath} (C/Y)/(f \colon X \to Y) \simeq C/X \end{displaymath} whence the statement immediately follows. \end{proof} \begin{prop} \label{pres}\hypertarget{pres}{} If $C$ is locally cartesian closed (and has a terminal object), then the pullback functor $X \times - \colon C \to C/X$ preserves both finite products and exponentials up to isomorphism. \end{prop} \begin{proof} Clearly $X \times - \colon C \to C/x$, being right adjoint to the forgetful functor $\sum_X \colon C/X \to C$, preserves limits, hence it preserves finite products in particular. Let $\phi \colon A \to X$ be any morphism. From the pullback diagram \begin{displaymath} \itexarray{ A \times Z & \stackrel{\phi \times 1}{\to} & X \times Z \\ _\mathllap{\pi_A} \downarrow & & \downarrow _\mathrlap{\pi_X} \\ A & \underset{\phi}{\to} & X } \end{displaymath} we conclude $A \times_X (X \times Z) \cong A \times Z$, seen as an object over $X$ via $\phi \circ \pi_A \colon A \times Z \to X$. Thus arrows in the slice $C/X$ of the form \begin{displaymath} A \times_X (X \times Z) \to X \times Y \end{displaymath} are in natural bijection with arrows in $C$ of the form \begin{displaymath} A \times Z \stackrel{\langle \phi \circ \pi_A, g\rangle}{\to} X \times Y \end{displaymath} which in turn are in natural bijection with arrows in the slice $C/X$ of the form \begin{displaymath} A \stackrel{\langle \phi, \tilde{g} \rangle}{\to} X \times Y^Z \end{displaymath} (where $\tilde{g} \colon A \to Y^Z$ is obtained by [[currying]] $g \colon A \times Z \to Y$ in $C$). This proves that $X \times - \colon C \to C/x$ preserves exponentials. \end{proof} \begin{cor} \label{}\hypertarget{}{} For any $f \colon X \to Y$ in $C$, the base change $f^\ast \colon C/Y \to C/X$ preserves exponentials. In other words, the dependent sum functor $\sum_f$ and the dependent product functor $\prod_f$ satisfy [[Frobenius reciprocity]]. \end{cor} \begin{proof} This is by combining proposition \ref{slicelcc} and proposition \ref{pres}, and recalling that the pullback functor \begin{displaymath} C/Y \to (C/Y)/(f \colon X \to Y) \simeq C/X \end{displaymath} is identified with the pullback functor $f^\ast \colon C/Y \to C/X$. \end{proof} This state of affairs may be summarized in terms of the notion of \emph{[[hyperdoctrine]]}: \begin{prop} \label{}\hypertarget{}{} If $C$ is a category with [[finite limits]], then it is locally cartesian closed precisely if regarded as an $C$-[[indexed category]] (by forming [[slice categories]]) it is a [[hyperdoctrine]]. \end{prop} For a proof of the statement in this form, see for instance (\hyperlink{Freyd}{Freyd}). \hypertarget{RelationCartesianClosureBaseChangeInTypeTheory}{}\paragraph*{{In type theory}}\label{RelationCartesianClosureBaseChangeInTypeTheory} We formulate some of the above considerations in the [[syntax]] of [[dependent type theory]]. \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} \itexarray{ X &&&& A \\ & {}_{\mathllap{\phi}}\searrow && \swarrow_{\mathrlap{c}} \\ && B } \end{displaymath} be two [[display maps]]. Then the [[category theory|category theoretic]] identification \begin{displaymath} [X,A]_{B} = \prod_\phi \phi^* \langle A \stackrel{c}{\to} B\rangle \end{displaymath} from prop. \ref{DependentProductImpliesLocalCartesinClosure} is the [[categorical semantics]] of the [[dependent type theory]] [[syntax]] \begin{displaymath} b : B \vdash X(b) \to A(b) : Type \;\;\; =_{def} \;\;\; b : B \vdash \prod_{x : X(b)} A(\phi(x)) \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} While equivalent under the [[relation between type theory and category theory]], the latter expression almost verbatim expresses the evident idea that: (collection of internal homs parameterized over $B$) = ( collection of sections of the pullback of $A$ to $X$ ) \end{remark} \begin{proof} By definition, the [[display map]] on the right is expressed as the [[dependent type]] \begin{displaymath} b : B \vdash A(b) : Type \,, \end{displaymath} the pullback $\phi^* \langle A \to B\rangle$ is expressed by [[substitution]] \begin{displaymath} x : X \vdash A(\phi(x)) : Type \end{displaymath} and next the [[dependent product]] $\prod_\phi \phi^* \langle A \to B\rangle$ by \begin{displaymath} b : B \vdash \prod_{x : X(b)} A(\phi(x)) : Type \,. \end{displaymath} Now on the right $\phi(x) =_{def} b$, formally because $\phi$ is equivalently the projection $pr_1$ out of $X$ expressed as the [[direct sum]] \begin{displaymath} \frac{(b,x) : \sum_{b : B} X(b)} { pr_1(b,x) =_{def} b =_{def} \phi(x) : B} \,. \end{displaymath} Inserting this in the above expression makes it [[definitional equality|definitionally equal]] to \begin{displaymath} b : B \vdash \prod_{x : X(b)} A(b) : Type \,. \end{displaymath} This is now a [[dependent product]] over a type that does not actually depend on the context $B$, and hence by definition this is the [[dependent type|dependent]] [[function type]] \begin{displaymath} b : B \vdash X(b) \to A(b) : Type \,. \end{displaymath} which expresses the internal hom in the slice over $B$. \end{proof} \hypertarget{internal_logic}{}\subsubsection*{{Internal logic}}\label{internal_logic} The [[internal logic]] of locally cartesian closed categories is an [[extensional type theory|extensional]] form of [[dependent type theory]]. In particular, the [[dependent product]] $\Pi_f$ represents an extensional [[dependent product type]] in the internal logic. \hypertarget{almost_local_cartesian_closure}{}\subsubsection*{{Almost local cartesian closure}}\label{almost_local_cartesian_closure} There are categories which are cartesian closed and not locally cartesian closed, but in which for some $f$ the base change functor $f^*: C/y \to C/x$ has a right adjoint. This includes $Cat$, $Gpd$, and the category of [[crossed complex]]es; in the latter two cases, it is necessary and sufficient for $f$ to be a [[fibration]], while in $Cat$ it is sufficient for $f$ to be a fibration or an opfibration. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{prop} \label{}\hypertarget{}{} Every [[sheaf topos]] is locally cartesian closed. \end{prop} \begin{proof} By [[Giraud's theorem]], in a sheaf topos [[pullbacks]] preserve [[colimits]]. With the [[adjoint functor theorem]] this implies that for every morphism $f : X \to Y$, the pullback functor $f^* : \mathcal{C}_{/Y} \to \mathcal{C}_{/X}$ has a [[right adjoint]] $\prod_f$. By prop. \ref{DependentProductImpliesLocalCartesinClosure} this yields the local cartesian closure. \end{proof} More generally, every [[quasitopos]] is locally cartesian closed. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cartesian closed category]], \textbf{locally cartesian closed category} \item [[cartesian closed functor]], [[locally cartesian closed functor]] \item [[cartesian closed model category]], [[locally cartesian closed model category]] \item [[cartesian closed (∞,1)-category]], [[locally cartesian closed (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook account is around corollary A1.5.3 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} The relation between local cartesian closure and base change/[[hyperdoctrine]] structure is sometimes attributed to \begin{itemize}% \item [[Peter Freyd]], \emph{Aspects of topoi}, Bull. Australian Math. Soc. 7 (1972), 1-76. \end{itemize} A discussion of [[dependent type theory]] as the [[internal language]] of locally cartesian closed categories is in \begin{itemize}% \item [[R. A. G. Seely]], \emph{Locally cartesian closed categories and type theory}, Math. Proc. Camb. Phil. Soc. (1984) 95 (\href{http://www.math.mcgill.ca/rags/LCCC/LCCC.pdf}{pdf}) \end{itemize} Related literature includes \begin{itemize}% \item [[Marta Bunge]], and [[Susan Niefield]], \emph{Exponentiability and single universes} J. Pure Appl. Algebra 148 (2000) 217--250. \item [[François Conduché]], \emph{Au sujet de l'existence d'adjoints \`a{} droite aux foncteurs ``image r\'e{}ciproque'' dans la cat\'e{}gorie des cat\'e{}gories} (French) C. R. Acad. Sci. Paris S\'e{}r. A-B 275 (1972), A891--A894. \item J. Howie, \emph{Pullback functors and crossed complexes} , Cahiers Topologie G\'e{}om. Diff\'e{}rentielle, 20 (1979) 281--296. \end{itemize} [[!redirects locally cartesian closed categories]] [[!redirects LCCC]] [[!redirects lccc]] [[!redirects locally Cartesian closed category]] [[!redirects locally Cartesian closed categories]] [[!redirects local cartesian closure]] \end{document}