\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally connected topological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_category_of_locally_connected_spaces}{The category of locally connected spaces}\dotfill \pageref*{the_category_of_locally_connected_spaces} \linebreak \noindent\hyperlink{cohesion_over_sets}{Cohesion over sets}\dotfill \pageref*{cohesion_over_sets} \linebreak \noindent\hyperlink{quotients_of_locally_connected_spaces}{Quotients of locally connected spaces}\dotfill \pageref*{quotients_of_locally_connected_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} It is not generally true that a [[topological space]] is the [[disjoint union space]] ([[coproduct]] in [[Top]]) of its [[connected components]]. The spaces such that this is true for all open subspaces are the \emph{locally connected topological spaces}. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{LocallyConnected}\hypertarget{LocallyConnected}{} \textbf{(locally connected topological space)} A [[topological space]] $X$ is \textbf{locally connected} if every point has a [[neighborhood basis]] of [[connected topological space|connected]] [[open subsets]]. \end{defn} \begin{prop} \label{AlternativeCharacterizationsOfLocalConnectivity}\hypertarget{AlternativeCharacterizationsOfLocalConnectivity}{} \textbf{(alternative characterizations of local connectivity)} For $X$ a [[topological space]], then the following are equivalent: \begin{enumerate}% \item $X$ is locally connected (def. \ref{LocallyConnected}); \item every [[connected component]] of every open [[subspace]] of $X$ is open; \item every [[open subset]], as a [[topological subspace]], is the [[disjoint union space]] ([[coproduct]] in [[Top]]) of its [[connected components]]. \end{enumerate} In particular, in a locally connected space, every connected component $S$ is a [[clopen subset]]; hence connected components and quasi-components coincide. \end{prop} \begin{proof} $\,$ 1) $\Rightarrow$ 2) Assume $X$ is locally connected, and let $U \subset X$ be an open subset with $U_0 \subset U$ a connected component. We need to show that $U_0$ is open. Consider any point $x \in U_0$. Since then also $x \in U$, the defintion of local connectedness, def. \ref{LocallyConnected}, implies that there is a connected open neighbourhood $U_{x,0}$ of $X$. Observe that this must be contained in $U_0$, for if it were not then $U_0 \cup U_{x,0}$ were a larger open connected open neighbourhood, contradicting the maximality of the connected component $U_0$. Hence $U_0 = \underset{x \in U_0}{\cup} U_{x,0}$ is a union of open subsets, and hence itself open. 2) $\Rightarrow$ 3) Now assume that every connected component of every open subset $U$ is open. Since the connected components generally consitute a [[cover]] of $X$ by [[disjoint subsets]] this means that now they for an [[open cover]] by disjoint subsets. But by forming intersections with the cover this implies that every open subset of $U$ is the disjoint union of open subsets of the connected components (and of course every union of open subsets of the connected components is still open in $U$), which is the definition of the topology on the [[disjoint union space]] of the connected components. 3) $\Rightarrow$ 1) Finally assume that every open subspace is the disjoint union of its connected components. Let $x$ be a point and $U_x \supset \{x\}$ a neighbourhood. We need to show that $U_x$ contains a connected neighbourhood of $x$. But, by definition, $U_x$ contains an open neighbourhood of $x$ and by assumption this decomposes as the disjoint union of its connected components. One of these contains $x$. Since in a [[disjoint union space]] all summands are open, this is the required connected open neighbourhod. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{LocallyConnectedEuclideanSpace}\hypertarget{LocallyConnectedEuclideanSpace}{} \textbf{([[Euclidean space]] is locally connected)} For $n \in \mathbb{N}$ the [[Euclidean space]] $\mathbb{R}^n$ (with its [[metric topology]]) is locally connected. \end{example} \begin{proof} By nature of the Euclidean metric topology, every neighbourhood $U_x$ of a point $x$ contains an [[open ball]] containing $x$. Moreover, every open ball clearly contains an open cube, hence a [[product space]] $\underset{i \in \{1, \cdots, n\}}{\prod} (x_i-\epsilon, x_i + \epsilon)$ of [[open intervals]] which is still a neighbourhood of $x$. Now intervals are connected (by \href{connected+space#ConnectedSubspacesOfRealLineAreTheIntervals}{this example}) and products of connected spaces are connected (by \href{connected+space#ProductSpaceOfConnectedSpacesIsConnected}{this example}). This shows that ever open neighbourhood contains a connected neighbourhood. \end{proof} \begin{prop} \label{LocallyConnectedOpenSubspaceOfLocallyConnectedSpace}\hypertarget{LocallyConnectedOpenSubspaceOfLocallyConnectedSpace}{} \textbf{([[open subset|open]] [[subspace]] of locally connected space is locally connected)} Every [[open subset|open]] [[subspace]] of a locally connected space is itself locally connected \end{prop} \begin{proof} This is immediate from def. \ref{LocallyConnected}. \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{Warning} A [[connected topological space]] need not be locally connected. \end{remark} \begin{example} \label{}\hypertarget{}{} The [[topologist's sine curve]] is connected but not locally connected. \end{example} Examples of locally connected spaces include [[manifold|topological manifolds]]. Finally, \begin{defn} \label{}\hypertarget{}{} A space $X$ is \textbf{[[totally disconnected topological space]]} if its [[connected components]] are precisely the [[singletons]] of $X$. \end{defn} In other words, a space is totally disconnected if its coreflection into $LocConn$ is discrete. Such spaces recur in the study of [[Stone spaces]]. The category of totally disconnected spaces is a reflective subcategory of $Top$. The reflector sends a space $X$ to the space $X/\sim$ whose points are the connected components of $X$, endowed with the quotient topology induced by the projection $q: X \to X/\sim$. Details may be found at [[totally disconnected space]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_category_of_locally_connected_spaces}{}\subsubsection*{{The category of locally connected spaces}}\label{the_category_of_locally_connected_spaces} Let $i \colon LocConn \hookrightarrow Top$ be the [[full subcategory]] inclusion of locally connected spaces into all of [[Top]]. The following result is straightforward but useful. \begin{theorem} \label{coref}\hypertarget{coref}{} $LocConn$ is a [[coreflective subcategory]] of $Top$, i.e., the inclusion $i$ has a [[right adjoint]] $R$. For $X$ a given space, $R(X)$ has the same underlying set as $X$, topologized by letting connected components of open subspaces of $X$ generate a topology. \end{theorem} Being a coreflective category of a complete and cocomplete category, the category $LocConn$ is also complete and cocomplete. Of course, limits and particularly \emph{infinite} products in $LocConn$ are not calculated as they are in $Top$; rather one takes the limit in $Top$ and \emph{then} retopologizes it according to Theorem \ref{coref}. (For \emph{finite} products of locally connected spaces, we can just take the product in $Top$ -- the result will be again locally connected.) \hypertarget{cohesion_over_sets}{}\subsubsection*{{Cohesion over sets}}\label{cohesion_over_sets} Let $\Gamma \colon LocConn \to Set$ be the underlying set functor, and let $\nabla, \Delta \colon Set \to LocConn$ be the functors which assign to a set the same set equipped with the codiscrete and discrete topologies, respectively. Let $\Pi_0 \colon LocConn \to Set$ be the functor which assigns to a locally connected space the set of its connected components. \begin{theorem} \label{}\hypertarget{}{} There is an [[adjoint quadruple]] of [[adjoint functors]] \begin{displaymath} \Pi_0 \dashv \Delta \dashv \Gamma \dashv \nabla \colon Set \to LocConn \end{displaymath} and moreover, the functor $\Pi_0$ preserves finite products. \end{theorem} The proof is largely straightforward; we point out that the continuity of the unit $X \to \Delta \Pi_0 X$ is immediate from a locally connected space's being the coproduct of its connected components. As for $\Pi_0$ preserving finite products, write locally connected spaces $X$, $Y$ as coproducts of connected spaces \begin{displaymath} X = \sum_i C_i; \qquad Y = \sum_j D_j; \end{displaymath} then their product in $LocConn$ coincides with their product in $Top$, and is \begin{displaymath} X \times Y \cong \sum_{i, j} C_i \times D_j \end{displaymath} where each summand $C_i \times D_j$ is connected by Result \ref{3}. From this it is immediate that $\Pi_0$ preserves finite products. Accordingly the [[category of sheaves]] on a locally connected space is a [[locally connected topos]]. For related discussions, see also [[cohesive topos]]. \hypertarget{quotients_of_locally_connected_spaces}{}\subsubsection*{{Quotients of locally connected spaces}}\label{quotients_of_locally_connected_spaces} \begin{lemma} \label{quot}\hypertarget{quot}{} A [[quotient space]] of a locally connected space $X$ is also locally connected. \end{lemma} \begin{proof} Suppose $q: X \to Y$ is a quotient map, and let $V \subseteq Y$ be an open neighborhood of $y \in Y$. Let $C(y)$ be the connected component of $y$ in $V$; we must show $C(y)$ is open in $Y$. For that it suffices that $C = q^{-1}(C(y))$ be open in $X$, or that each $x \in C$ is an interior point. Since $X$ is locally connected, the connected component $U_x$ of $x$ in $q^{-1}(V)$ is open, and the subset $q(U_x) \subseteq V$ is connected, and therefore $q(U_x) \subseteq C(y)$ (as $C(y)$ is the maximal connected subset of $V$ containing $q(x)$). Hence $U_x \subseteq q^{-1}(C(y)) = C$, proving that $x$ is interior to $C$, as desired. \end{proof} The conclusion does not follow if $q: X \to Y$ is merely surjective; e.g., there is a surjective (continuous) map from $\mathbb{R}$ to (a version of) the [[Warsaw circle]], but the latter is not locally connected. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[totally disconnected topological space]] \item [[locally connected topos]] \end{itemize} [[!redirects locally connected space]] [[!redirects locally connected spaces]] [[!redirects locally connected topological space]] [[!redirects locally connected topological spaces]] \end{document}