\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally constant sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{pattern}{Pattern}\dotfill \pageref*{pattern} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A locally constant [[sheaf]] $A$ over a [[topological space]] is a sheaf of [[section]]s of a [[covering space]] of $X$: there is a [[cover]] of $X$ by open subsets $\{U_i\}$ such that the [[inverse image|restrictions]] $A|_{U_i}$ are [[constant sheaf|constant sheaves]]. More elegantly said: locally constant sheaves are the sections of [[constant stack]]s: Let $C = Core(FinSet)\in$ [[Grpd]] be the [[core]] of the [[category]] [[FinSet]] of finite set, let $const_C : Op(X)^{op} \to Grpd$ the [[constant presheaf|presheaf constant]] on $C$, i.e. the [[functor]] on the [[opposite category]] of the [[category of open subsets]] of $X$ that sends everything to (the identity on) $C$. Then the [[constant stack]] on $C$ is the [[stackification]] $\bar const_C : Op(X)^{op} \to Grpd$. Write then $X$ for the space $X$ regarded as a sheaf or trivial [[covering space]] over itself, i.e. the [[terminal object]] $X$ in sheaves and hence in stacks over $X$. Then by definition of stackification morphisms \begin{displaymath} X \to \bar const_C \end{displaymath} are represented by \begin{itemize}% \item an open cover $\{U_i\}$ of $X$; \item over each $U_i$ a choice $F_i \in C$ of object in $C$, hence a finite set in $C$; \item over each double overlap $U_{i j} = U_i \cap U_j$ an morphism $g_{i j} : F_i|_{I_{i j}} \stackrel{\simeq}{\to} F_j|_{U_{i j}}$, hence a bijection of finite sets; \item such that on triple overlaps we have $g_{i k}|_{U_{i j k}}= g_{j k}|_{U_{i j k}}\circ g_{i j}|_{U_{i j k}}$. \end{itemize} Such data clearly is the local data for a [[covering space]] over $X$ with typical fiber any of the $F_i$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(\Delta \dashv \Gamma) : \mathcal{E} \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}} \mathcal{S}$ be the [[global section]] [[geometric morphism]] of a [[topos]] $\mathcal{E}$ over base $\mathcal{S}$. Without further assumption on $\mathcal{E}$ we have the following definition. \begin{defn} \label{}\hypertarget{}{} For $U \to *$ an [[epimorphism]] in $\mathcal{E}$, an [[object]] $E \in \mathcal{E}$ is called \textbf{locally constant and split by $U$} if in the [[over category]] $\mathcal{E}/U$ we have an [[isomorphism]] \begin{displaymath} E \times U \simeq (\Delta S) \times U \,, \end{displaymath} for some $S \in$ [[Set]]. An object which is locally constant and $U$-split for \emph{some} $U$ is called \textbf{locally constant}. A locally constant object $E$ which is in addition an $\Delta Aut(X)$-[[principal bundle]] is called a \textbf{[[Galois object]]} . \end{defn} If $\mathcal{E}$ is a [[locally connected topos]] there is another characterization of locally constant sheaves. \begin{defn} \label{}\hypertarget{}{} For $C$ and $C$ [[cartesian closed categories]], a [[functor]] $F : C \to D$ that preserves [[product]]s is called a \textbf{[[cartesian closed functor]]} if the canonical [[natural transformation]] \begin{displaymath} F(B^A) \to (F(B))^{F(A)} \end{displaymath} (which is the [[adjunct]] of $F(A) \times F(B^A) \simeq F(A \times B^A) \to F(B)$) is an [[isomorphism]]. \end{defn} From the discussion at [[locally connected topos]] we have that \begin{prop} \label{}\hypertarget{}{} The [[constant sheaf]]-functor $\Delta : \mathcal{S} \to \mathcal{E}$ is a [[cartesian closed functor]] precisely if $\mathcal{E}$ is a [[locally connected topos]]. \end{prop} In this case the above definition is equivalent to the following one. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{E} = Sh(C)$ be a [[locally connected topos]]. Let $p : core(Set^\kappa_*) \to core(Set^\kappa)$ be the [[core]] of the [[generalized universal bundle]] for sets of [[cardinality]] less than some $\kappa$. A \textbf{locally constant $\kappa$-bounded object} in $\mathcal{E}$ is the [[pullback]] of $\Delta(p)$ along a morphism $* \to core(Set^\kappa)$ in the [[2-topos|(2,1)-topos]] $Sh_{(2,1)}(C)$. \end{defn} \begin{remark} \label{}\hypertarget{}{} This says that locally constant sheaves are the sections of the [[constant stack]] on the [[groupoid]] $core(Set^\kappa)$. Notice that \begin{displaymath} core(Set \kappa) \simeq \coprod_i \mathbf{B}Aut(F_i) \,, \end{displaymath} where the [[coproduct]] is over all [[cardinal]]s smaller than $\kappa$ and where $\mathbf{B}Aut(F_i)$ denotes the [[delooping]] [[groupoid]] of the [[automorphism group]] of the set $F_i$: the [[symmetric group]] on $F_i$. This means that on each connected component of $\mathcal{E}$ a locally constant sheaf is the $\Delta \rho$-[[associated bundle]] to an $\Delta Aut(F)$-[[principal bundle]] induced by the canonical [[permutation representation]] $\rho : \mathbf{B} Aut(F) \to Set$ of the [[automorphism group]] $Aut(F)$ on $F$. Specifically for $g : * \to \Delta \mathbf{B} Aut(F) \simeq \mathbf{B} \Delta Aut(F) \hookrightarrow \Delta core(set)$ the classifying morphism of a locally constant sheaf and for $U \to *$ an [[epimorphism]] on which it trivializes, we have a pasting diagram of [[pullback]]s \begin{displaymath} \itexarray{ U \times \Delta F &\to& P \times_{\Delta Aut(F) (\Delta (F // Aut(F)))} &\to& \Delta(F // Aut(F)) &\to& \Delta Set^\kappa \\ \downarrow && \downarrow && \downarrow && \downarrow \\ U &\to& * &\stackrel{g}{\to}& \mathbf{B} \Delta Aut(F) &\hookrightarrow& \Delta core(Set^\kappa) } \,, \end{displaymath} where $F//Aut(F)$ is the [[action groupoid]], the [[2-colimit]] of $\rho \mathbf{B}Aut(F) \to Grpd$. \end{remark} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item Locally constant sheaves are sheaves of sections of [[covering space]]s. \item When used as coefficient objects in [[cohomology]] they are also called [[local system]]s. \item The [[action]] of the [[fundamental groupoid]] $\Pi_1(X)$ on the fibers of a local system give rise to the notion of [[monodromy]]. \item This may be used to define [[homotopy group (of an infinity-stack)|homotopy groups of]] general objects in a [[topos]], and the [[fundamental group of a topos]]. \item This is the content of [[Galois theory]]. \end{itemize} \hypertarget{pattern}{}\subsection*{{Pattern}}\label{pattern} In sufficiently highly locally connected cases, we have: \begin{itemize}% \item A [[locally constant function]] is a section of a [[constant sheaf]]; \item a \textbf{locally constant sheaf} is a section of a [[constant stack]]; \item a [[locally constant stack]] is a section of (\ldots{} and so on\ldots{}) \item a [[locally constant ∞-stack]] is a section of a [[constant ∞-stack]]. \end{itemize} A locally constant sheaf / $\infty$-stack is also called a [[local system]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[constructible sheaf]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition of \emph{locally constant sheaf} originates in the notion of \emph{covering projection} \begin{itemize}% \item [[SGA]] 4, Expos\'e{} IX, 2.0 . \end{itemize} Lecture notes are in \begin{itemize}% \item [[James Milne]], section 6 of \emph{[[Lectures on Étale Cohomology]]} \end{itemize} The topos-theoretic definition is reproduced in the context of a discussion of the notion of [[Galois topos]] as definition 5.1.1 in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{On the representation theory of Galois and Atomic Topoi} (\href{http://arxiv.org/abs/math/0208222}{arXiv:0208222}) \end{itemize} and definition 2.2 in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{The fundamental progroupoid of a general topos} (\href{http://arxiv.org/abs/0706.1771}{arXiv:0706.1771}) \end{itemize} or as definition 1 in \begin{itemize}% \item [[Michael Barr]], [[Radu Diaconescu]], \emph{On locally simply connected toposes and their fundamental groups} (\href{http://www.numdam.org/item?id=CTGDC_1981__22_3_301_0}{NUMDAM}) \end{itemize} Discussion of the notions of locally constant sheaves is at \begin{itemize}% \item [[Michael Shulman]], \emph{Locally constant sheaves} () \end{itemize} [[!redirects locally constant sheaves]] [[!redirects locally constant object]] [[!redirects locally constant objects]] \end{document}