\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally convex topological vector space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ContinuousLinearFunctionals}{Continuous linear functionals}\dotfill \pageref*{ContinuousLinearFunctionals} \linebreak \noindent\hyperlink{coprobes_and_curves}{Co-Probes and curves}\dotfill \pageref*{coprobes_and_curves} \linebreak \noindent\hyperlink{diagram_of_properties}{Diagram of properties}\dotfill \pageref*{diagram_of_properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[topological vector space]] is \textbf{locally convex} if it has a [[base of its topology]] consisting of [[convex subsets|convex]] [[open subsets]]. Equivalently, it is a vector space equipped with a [[gauge space|gauge]] consisting of [[seminormed vector space|seminorms]]. As with other topological vector spaces, a locally convex space (LCS or LCTVS) is often assumed to be [[Hausdorff space|Hausdorff]]. Locally convex (topological vector) spaces are the standard setup for much of contemporary [[functional analysis]]. A natural notion of [[smooth map]] between lctvs is given by [[Michal-Bastiani smooth maps]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The category $lctvs$ is a [[symmetric monoidal category]] with the [[inductive tensor product]] and even a symmetric [[closed monoidal category]], where the internal homs are given by the space of continuous linear maps with the topology of pointwise convergence. \hypertarget{ContinuousLinearFunctionals}{}\subsubsection*{{Continuous linear functionals}}\label{ContinuousLinearFunctionals} One reason why locally convex [[topological vector spaces]] are important is that lots of [[continuous linear functionals]] exist on them, at least if one assumes an appropriate choice principle, e.g., [[axiom of choice]] or [[ultrafilter theorem]] (or just [[dependent choice]] for a [[separable space]]). This fact is encapsulated in the [[Hahn-Banach theorem]]; a nice exposition is given in \hyperlink{Tao09}{Tao 09}. By way of contrast, a [[topological vector space]] which is \emph{not} locally convex, such as the [[Lebesgue space]] $L^p([0, 1])$ where $0 \lt p \lt 1$, need not have any (nonzero) [[continuous linear functionals]] at all. \begin{defn} \label{DirectedSystemOfSeminorms}\hypertarget{DirectedSystemOfSeminorms}{} \textbf{(directed system of seminorms)} A family $\{p_q\}_{q \in Q}$ of [[seminorms]] on some [[real vector space]] $V$ is called \emph{directed} if \begin{displaymath} \underset{q_1, q_2 \in Q}{\forall} \left( \underset{q \in Q}{\exists} \left( \underset{C \in (0,\infty)}{\exists} \left( \underset{v \in V}{\forall} \left( \, C p_q(v) \leq max\{ p_{q_1}(v), p_{q_2}(v) \} \, \right) \right) \right) \right) \,. \end{displaymath} \end{defn} (e.g. \hyperlink{Infusino17}{Infusino 17} \href{http://www.math.uni-konstanz.de/~infusino/TVS-SS17/Lect10.pdf}{def. 4.2.15}) \begin{prop} \label{MaximumEnvelopeOfSeminorms}\hypertarget{MaximumEnvelopeOfSeminorms}{} \textbf{(maximum envelope of seminorms)} Let $V$ be a [[real vector space]] equipped with a set $\{p_q \colon V \to \mathbb{R}\}_{q \in Q}$ of [[seminorms]]. Then the [[maxima]] of [[inhabited|non-empty]] [[finite set|finite]] [[subsets]] $J \subset Q$ of these seminorms \begin{displaymath} v \mapsto \left( \underset{q \in J}{max} p_q(v) \right) \end{displaymath} are themselves seminorms, and the set of them \begin{displaymath} \left\{ \underset{q \subset J}{max} p_q(-) \right\}_{ { J \subset Q } \atop {\text{finite, non-empty}} } \end{displaymath} generate the same [[topological vector space|topology]] on $V$ as the original $\{p_q\}$ do. Moreover, the system of maximum seminorms evidently form a filtered system according to def. \ref{DirectedSystemOfSeminorms}. \end{prop} (e.g. \hyperlink{Infusino17}{Infusino 17} \href{http://www.math.uni-konstanz.de/~infusino/TVS-SS17/Lect10.pdf}{prop. 4.2.13, 4.2.14}) \begin{prop} \label{AlternativeCharacterizationOfContinuityForLinearFunctionals}\hypertarget{AlternativeCharacterizationOfContinuityForLinearFunctionals}{} \textbf{(characterization of continuity for linear functionals by norm-bounds)} Let $V$ be a [[real vector space]] and $\tau$ a [[topological space|topology]] on $V$ that makes it a locally convex topological vector space, induced from a set of [[seminorms]] $\{p_q \colon V \to \mathbb{R}\}_{q \in Q}$. Consider a [[linear function]] \begin{displaymath} L \colon V \to \mathbb{R} \end{displaymath} \begin{enumerate}% \item (directed system of seminorms) If the system of seminorms $\{p_q\}_{q \in Q}$ is directed (def. \ref{DirectedSystemOfSeminorms}) then $L$ is a [[continuous function]] with respect to $\tau$, hence is a [[continuous linear functional]], precisely if it is $q$-continuous for some $q \in Q$: \begin{displaymath} \left( L \,\text{continuous with respect to}\, \tau \right) \;\Leftrightarrow\; \underset{q \in Q}{\exists} \left( \underset{C \in (0,\infty)}{\exists} \left( \underset{v \in V}{\forall} \left( \, {\vert L(v)\vert} \leq C p_q(v) \, \right) \right) \right) \,. \end{displaymath} \item (general system of seminorms) Together with prop. \ref{MaximumEnvelopeOfSeminorms} this means that for $\{p_q\}_{q \in Q}$ any set of seminorms (not necessarily directed), then $L$ is continuous precisely if there exists a [[inhabited set|inhabited]] [[finite set|finite]] [[subset]] of seminorms such that $L$ is bounded with respect to the [[maximum]] over this set: \begin{displaymath} \left( L \,\text{continuous with respect to}\, \tau \right) \;\Leftrightarrow\; \underset{q_1, \cdots, q_n \in Q}{\exists} \left( \underset{C \in (0,\infty)}{\exists} \left( \underset{v \in V}{\forall} \left( \, {\vert L(v)\vert} \leq C \underset{k = 1, \cdots, n}{max} p_{q_n}(v) \, \right) \right) \right) \,. \end{displaymath} \end{enumerate} \end{prop} (e.g. \hyperlink{Infusino17}{Infusino 17}, \href{http://www.math.uni-konstanz.de/~infusino/Lect12.pdf}{prop. 4.6.1, corollary 4.6.2}), or remark 3-4 4. here: \href{https://www.math.ksu.edu/~nagy/func-an-2007-2008/lcvs-5.pdf}{pdf} \hypertarget{coprobes_and_curves}{}\subsubsection*{{Co-Probes and curves}}\label{coprobes_and_curves} The collections of [[continuous linear functionals]] on a LCTVS is used in a way analogous to the collection of [[coordinate]] [[projections]] $pr_i:\mathbb{R}^n\to \mathbb{R}$ out of a [[Cartesian space]]. For example, [[curves]] in a LCTVS over the reals can be composed with functionals to arrive at a collection of functions $\mathbb{R} \to \mathbb{R}$ which are analogous to the `components' of the curve. In one respect, a locally convex TVS is a [[nice topological space]] in that there are enough co-probes by maps to the base field. \hypertarget{diagram_of_properties}{}\subsubsection*{{Diagram of properties}}\label{diagram_of_properties} [[!include diagram of LCTVS properties]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Fréchet spaces]] are locally convex topological vector spaces \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item J. L. Taylor, \emph{Notes on locally convex topological vector spaces} (1995) (\href{http://www.math.utah.edu/~taylor/LCS.pdf}{pdf}) \item [[Terence Tao]], \emph{\href{http://terrytao.wordpress.com/2009/01/26/245b-notes-6-duality-and-the-hahn-banach-theorem/}{Duality and the Hahn-Banach theorem}}, 2009 \item Maria Infusino, \emph{\href{http://www.math.uni-konstanz.de/~infusino/TVS-SS17/teachingSS2017.html}{Topological vector spaces}} 2017 \end{itemize} category: analysis [[!redirects locally convex space]] [[!redirects locally convex]] [[!redirects locally convex spaces]] [[!redirects locally convex vector space]] [[!redirects locally convex vector spaces]] [[!redirects locally convex topological vector space]] [[!redirects locally convex topological vector spaces]] [[!redirects locally convex TVS]] [[!redirects locally convex TVSs]] [[!redirects locally convex TVSes]] [[!redirects LCS]] [[!redirects LCSs]] [[!redirects LCSes]] [[!redirects LCTVS]] [[!redirects LCTVSs]] [[!redirects LCTVSes]] [[!redirects locally convex Hausdorff space]] [[!redirects locally convex Hausdorff spaces]] [[!redirects Hausdorff locally convex space]] [[!redirects Hausdorff locally convex spaces]] [[!redirects hausdorff locally convex space]] \end{document}