\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally presentable (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivalentCharacterizationsDetails}{Equivalent characterizations}\dotfill \pageref*{EquivalentCharacterizationsDetails} \linebreak \noindent\hyperlink{StabilityUnderVariousConstructions}{Stability under various constructions}\dotfill \pageref*{StabilityUnderVariousConstructions} \linebreak \noindent\hyperlink{LimitsAndColimits}{Limits and colimits}\dotfill \pageref*{LimitsAndColimits} \linebreak \noindent\hyperlink{PresentedByCombinatorialSimplicialModelCategories}{As $(\infty,1)$-categories presented by combinatorial simplicial model categories}\dotfill \pageref*{PresentedByCombinatorialSimplicialModelCategories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An [[(∞,1)-category]] is called \emph{locally presentable} if it has all small [[(∞,1)-colimits]] and its [[objects]] are [[generators and relations|presented]] under [[(∞,1)-colimits]] by a [[small set]] of [[small objects]]. This is the direct analog in [[(∞,1)-category]] theory of the notion of \emph{[[locally presentable category]]} in [[category theory]]. There is a wealth of equivalent ways to make precise what this means, which are listed \hyperlink{Definition}{below}. Two particularly useful ones are: \begin{enumerate}% \item A locally presentable $(\infty,1)$-category is an [[accessible (∞,1)-category]] that admits all small [[(∞,1)-colimits]]. \item The locally presentable $(\infty,1)$-categories $\mathcal{C}$ are precisely the [[accessible (∞,1)-functor|accessibly embedded]] [[localization of an (∞,1)-category|localizations]]/[[reflective sub-(∞,1)-category|reflections]] $\mathcal{C} \stackrel{\overset{}{\leftarrow}}{\hookrightarrow} PSh_\infty(K)$ of an [[(∞,1)-category of (∞,1)-presheaves]]. In particular, if the reflector of this reflection is a [[left exact (∞,1)-functor]], then $\mathcal{C}$ is an [[(∞,1)-topos]]. \end{enumerate} See also at \emph{[[locally presentable categories - introduction]]}. \textbf{Warning on terminology.} In \hyperlink{Lurie}{Lurie} the term \emph{presentable $(\infty,1)$-category} is used for what we call a \emph{locally presentable $(\infty,1)$-category} here, in order to be in line with the established terminology of \emph{[[locally presentable category]]} in ordinary [[category theory]]. \textbf{Terminological variant.} The term ``$\kappa$-[[compactly generated (∞,1)-category]]'' is sometimes used to mean ``locally $\kappa$-presentable (∞,1)-category. See there for a discussion of usage differences. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{}\hypertarget{}{} An [[(∞,1)-category]] $\mathcal{C}$ is called \textbf{locally presentable} if \begin{enumerate}% \item it is [[accessible (∞,1)-category|accessible]] \item it has all small [[(∞,1)-colimits]]. \end{enumerate} \end{defn} \begin{prop} \label{EquivalentCharacterizations}\hypertarget{EquivalentCharacterizations}{} That $\mathcal{C}$ is locally presentable is equivalent to each of the following equivalent characterizations. \begin{enumerate}% \item $\mathcal{C}$ is [[locally small (infinity,1)-category|locally small]], with all small [[(∞,1)-colimits]] such that there is a [[small set]] $S \hookrightarrow Obj(\mathcal{C})$ of [[small objects]] which generates all of $\mathcal{C}$ under [[(∞,1)-colimits]]. \item $\mathcal{C}$ is the [[localization of an (∞,1)-category|localization]] of an [[(∞,1)-category of (∞,1)-presheaves]] $PSh_\infty(K)$ along an [[accessible (∞,1)-functor]]: there exists a [[small (∞,1)-category]] $K$ and a pair of [[adjoint (∞,1)-functors]] \begin{displaymath} \mathcal{C} \stackrel{\overset{}{\leftarrow}}{\hookrightarrow} PSh_\infty(K) \end{displaymath} such that the [[right adjoint]] $\mathcal{C} \hookrightarrow PSh_\infty(K)$ is [[full and faithful (∞,1)-functor|full and faithful]] and [[accessible (∞,1)-functor|accessible]]. (if here in addition $f$ is [[exact functor|left exact]] then $\mathcal{C}$ is an [[(∞,1)-category of (∞,1)-sheaves]] on $K$). \item There exists a [[combinatorial simplicial model category]] $A$ and and [[equivalence of (infinity,1)-categories]] $\mathcal{C} \simeq L_W A$ with the [[simplicial localization]] of $A$. More explicitly: with $\mathcal{C}$ incarnated as a [[quasi-category]] there is [[equivalence of quasi-categories]] $\mathcal{C} \simeq N(A^\circ)$ of $\mathcal{C}$ with the [[homotopy coherent nerve]] of the full [[sSet]]-[[enriched category|enriched]] [[subcategory]] of $A$ on [[fibrant object|fibrant]] and [[cofibrant objects]]. \item $\mathcal{C}$ is [[accessible (infinity,1)-category|accessible]] and for every [[cardinal number|regular cardinal]] $\kappa$ the [[full sub-(∞,1)-category]] $\mathcal{C}^\kappa \hookrightarrow \mathcal{C}$ on the $\kappa$ [[compact object in an (∞,1)-category|compact objects]] admits $\kappa$-small [[(∞,1)-colimits]]. \item There exists a [[cardinal number|regular cardinal]] $\kappa$ such that $\mathcal{C}$ is $\kappa$-[[accessible (infinity,1)-category|accessible]] and $C^\kappa$ admits $\kappa$-small [[limit in quasi-categories|colimits]]; \item There exists a [[cardinal number|regular cardinal]] $\kappa$, a [[small (∞,1)-category]] $D$ with $\kappa$-small [[limit in quasi-categories|colimits]] and an equivalence $Ind_\kappa D \stackrel{\simeq}{\to} \mathcal{C}$ with the category of $\kappa$-[[ind-object]]s of $D$. \end{enumerate} \end{prop} This is \hyperlink{Lurie}{Lurie, theorem 5.5.1.1}, following (\hyperlink{Simpson}{Simpson}). \begin{remark} \label{}\hypertarget{}{} That [[localization of an (infinity,1)-category|localizations]] $\mathcal{C} \stackrel{\leftarrow}{\hookrightarrow} PSh_{(\infty,1)}(K)$ correspond to combinatorial simplicial model categories is essentially \textbf{[[Dugger's theorem]]} (\hyperlink{Dugger}{Dugger}): every [[combinatorial model category]] arises, up to Quillen equivalence, as the left [[Bousfield localization of model categories|left Bousfield localization]] of the global projective [[model structure on simplicial presheaves]]. \end{remark} Locally presentable $(\infty,1)$-categories have a number of nice properties, and therefore it is of interest to consider as morphisms between them only those [[(∞,1)-functor]]s that preserve these properties. It turns out that it is useful to consider \emph{[[limit in a quasi-category|colimit]] preserving} functors. By the [[adjoint (∞,1)-functor theorem]] these are precisely the functors that have a right [[adjoint (∞,1)-functor]]. \begin{defn} \label{}\hypertarget{}{} Write [[Pr(∞,1)Cat]] $\subset$ [[(∞,1)Cat]] for the (non-full) [[sub-quasi-category|sub-(∞,1)-category]] of [[(∞,1)Cat]] (the collection of not-necessarily small $(\infty,1)$-categories) on \begin{itemize}% \item those objects that are locally presentable $(\infty,1)$-categories; \item those morphisms that are colimit-preserving [[(∞,1)-functor]]s. \end{itemize} \end{defn} This is \hyperlink{Lurie}{Lurie, def. 5.5.3.1}. This $(\infty,1)$-category $Pr(\infty,1)Cat$ in turn as special properties. More on that is at \emph{[[symmetric monoidal (∞,1)-category of presentable (∞,1)-categories]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivalentCharacterizationsDetails}{}\subsubsection*{{Equivalent characterizations}}\label{EquivalentCharacterizationsDetails} We indicate stepts in the proof of prop. \ref{EquivalentCharacterizations}. \begin{lemma} \label{}\hypertarget{}{} Let $f \colon \mathcal{C} \to \mathcal{D}$ be an [[(∞,1)-functor]] which exhibits $\mathcal{D}$ as an [[idempotent completion]] $\mathcal{C}$. Let $\kappa$ be a [[regular cardinal]]. Then the induced functor on [[(∞,1)-categories of ind-objects]] \begin{displaymath} Ind_\kappa(f) \colon Ind_\kappa(\mathcal{C}) \to Ind_\kappa(\mathcal{D}) \end{displaymath} is an [[equivalence of (∞,1)-categories]]. \end{lemma} This is (\hyperlink{Lurie}{Lurie, lemma 5.5.1.3}). \begin{lemma} \label{}\hypertarget{}{} Let $L \colon \mathcal{C} \to \mathcal{D}$ be an [[(∞,1)-functor]] between [[(∞,1)-categories]] which have $\kappa$-[[filtered (∞,1)-colimits]], and let $R$ be a [[right adjoint|right]] [[adjoint (∞,1)-functor]] of $L$. If $R$ preserves $\kappa$-[[filtered (∞,1)-colimits]] then $L$ preserves $\kappa$-[[compact objects]]. \end{lemma} This is \hyperlink{Lurie}{Lurie, lemma 5.5.1.4}. (\ldots{}) \hypertarget{StabilityUnderVariousConstructions}{}\subsubsection*{{Stability under various constructions}}\label{StabilityUnderVariousConstructions} \begin{prop} \label{}\hypertarget{}{} For $C$ a locally presentable $(\infty,1)$-category and $p : K \to C$ a [[diagram]] in $C$, also the [[over quasi-category|over (∞,1)-category]] $C_{/pp}$ as well as the under-$(\infty,1)$-category $C_{p/}$ are locally presentable. \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.3.10, prop. 5.5.3.11]]. \begin{example} \label{}\hypertarget{}{} Since [[Pr(∞,1)Cat]] admits all small limits, we obtain new locally presentable $(\infty,1)$-categories by forming limits over given ones. In particular the [[product]] of locally presentable $(\infty,1)$-categories is again locally presentable. \end{example} \hypertarget{LimitsAndColimits}{}\subsubsection*{{Limits and colimits}}\label{LimitsAndColimits} In the first definition of locally presentable $(\infty,1)$-category above only the existence of colimits is postulated. An important fact is that it follows automatically that also all small limits exist: A [[representable functor]] $C^{op} \to \infty Grpd$ preserves [[limit in a quasi-category|limits]] (see [[(∞,1)-Yoneda embedding]]). If $C$ is locally presentable, then also the converse holds: \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ is a locally presentable $(\infty,1)$-category then an [[(∞,1)-functor]] $C^{op} \to \infty Grpd$ is a [[representable functor]] precisely if it preserves [[limit in a quasi-category|limits]]. \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.2.2]]. \begin{proof} We need to prove that a limit-preserving functor $F : C^{op} \to \infty Grpd$ is [[representable functor|representable]]. By the above characterizations we know that $C$ is an accessible localization of a presheaf category. So consider first the case that $C = PSh(D)$ \emph{is} a presheaf category. Write \begin{displaymath} f : D^{op} \stackrel{j^{op}}{\to} PSh(D)^{op} \stackrel{F}{\to} \infty Grpd \end{displaymath} for the precomposition of $F$ with the [[(∞,1)-Yoneda embedding]]. Then let \begin{displaymath} F' := Hom_{C}(-,f) : PSh(D)^{op} \to \infty Grpd \end{displaymath} the functor represented by $f$. We claim that $F \simeq F'$, which proves that $F$ is represented by $F \circ j^{op}$: since both $F$ and $F'$ preserve limits (hence colimits as functors on $PSh(D)$) it follows from the fact that the Yoneda embedding exhibits the universal co-completion of $D$ that it is sufficient to show that $F \circ j^{op} \simeq F' \circ j^{op}$. But this is the case precisely by the statement of the full [[(∞,1)-Yoneda lemma]]. Now consider more generally the case that $C$ is a [[reflective sub-(∞,1)-category]] of $PSh(D)$. Let $L : PSh(D) \to C$ be the [[left adjoint]] reflector. Since it respects all colimits, the composite \begin{displaymath} F \circ L^{op} : PSh(D)^{op} \stackrel{L^{op}}{\to} C^{op} \stackrel{F}{\to} \infty Grpd \end{displaymath} respects all limits. By the above it is therefore represented by some object $X \in PSh(D)$. By the general properties of [[reflective sub-(∞,1)-categories]], we have that $C$ is the full [[sub-(∞,1)-category]] of $PSh(D)$ on those objects that are [[local object]]s with respect to the morphisms that $L$ sends to equivalences. But $X$, since it presents $F \circ L^{op}$, is manifestly local in this sense and therefore also represents $F \circ L^{op}|_{C}$. But on $C$ the functor $L$ is equivalent to the identity, so that this is equivlent to $F$. \end{proof} This statement has the following important consequence: \begin{cor} \label{}\hypertarget{}{} A locally presentable $(\infty,1)$-category $C$ has all small [[limit in a quasi-category|limits]]. \end{cor} This is [[Higher Topos Theory|HTT, prop. 5.5.2.4]]. \begin{proof} We may compute the limit after applying the [[(∞,1)-Yoneda embedding]] $j : C \to PSh_{(\infty,1)}(c)$. Since this is a [[full and faithful (∞,1)-functor]] it is sufficient to check that the limit computed in $PSh(C)$ lands in the essential image of $j$. But by the above lemma, this amounts to checking that the limit over limit-preserving functors is itself a limit-preserving functor. This follows using that limits of functors are computed objectwise and that generally limits commute with each other (see [[limit in a quasi-category]]): to check for $I \to PSh(C)$ a diagram of limit-preserving functors that $\lim_i F_i$ is a functor that commutes with all limits, let $a : J \to C$ be a diagram and compute (verbatim as in ordinary category theory) \begin{displaymath} \begin{aligned} \lim_j (\lim_i F_i)(a_j) & \simeq \lim_j (\lim_i F_i(a_j)) \\ & \simeq \lim_i (\lim_j F_i(a_j)) \\ & \simeq \lim_i F_i(\lim a_j) \\ & \simeq (\lim_i F_i)(\lim a_j) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{PresentedByCombinatorialSimplicialModelCategories}{}\subsubsection*{{As $(\infty,1)$-categories presented by combinatorial simplicial model categories}}\label{PresentedByCombinatorialSimplicialModelCategories} By prop. \ref{EquivalentCharacterizations} locally presentable $(\infty,1)$-categories are equivalently those [[(∞,1)-categories]] which are \emph{presented} by a [[combinatorial simplicial model category]] $C$ in that they are the full [[simplicially enriched category|simplicial subcategory]] $C^\circ \hookrightarrow C$ on fibrant-cofibrant objects of $C$ (or, equivalently, the [[quasi-category]] associated to this [[simplicially enriched category]]). \begin{remark} \label{QuillenEquivZigZag}\hypertarget{QuillenEquivZigZag}{} Under this presentation, [[equivalence of (∞,1)-categories]] between locally presentable $(\infty,1)$-categories corresponds to [[zigzags]] of [[Quillen equivalences]] between presenting [[combinatorial simplicial model category|combinatorial simplicial model categories]]: $C^\circ$ and $D^\circ$ are [[equivalence of (∞,1)-categories|equivalent as (∞,1)-categories]] precisely if they are connected by a [[zig-zag]] of [[simplicial Quillen adjunction|simplicial]] [[Quillen equivalences]] \begin{displaymath} C \stackrel{\leftarrow}{\to} \stackrel{\to}{\leftarrow} \stackrel{\leftarrow}{\to} \cdots D. \end{displaymath} \end{remark} This is \hyperlink{Lurie}{Lurie, remark A.3.7.7}. \begin{remark} \label{}\hypertarget{}{} Partly due to the fact that [[simplicial model category|simplicial model categories]] have been studied for a longer time -- partly because they are simply more tractable than [[(∞,1)-categories]] -- many $(\infty,1)$-categories are indeed handled in terms of such a presentation by a [[simplicial model category]]. The canonical example is the presentation of the [[(∞,1)-category of (∞,1)-sheaves]] on an ordinary (1-categorical) [[site]] $S$ by the simplicial [[model structure on simplicial presheaves|model category of simplicial presheaves]] on $S$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The basic example is: \begin{example} \label{}\hypertarget{}{} [[∞Grpd]] is locally presentable. \end{example} (\hyperlink{Lurie}{Lurie, example 5.5.1.8}) \begin{proof} According to the discussion at \href{limit+in+a+quasi-category#Tensoring}{(∞,1)-colimit -- Tensoring with an ∞-groupoid} every [[∞-groupoid]] is the colimit over itself of the functor contant on the point, the terminal $\infty$-groupoid. This is clearly compact, and hence generates [[∞Grpd]]. \end{proof} \begin{example} \label{}\hypertarget{}{} An [[(∞,1)-topos]] is precisely a locally presentable $(\infty,1)$-category where the [[localization of an (∞,1)-category|localization]] functor also preserves finite limits. \end{example} \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ locally presentable $(\infty,1)$-categories, write $Func^L(C,D) \subset Func(C,D)$ for the full sub-$(\infty,1)$-category on left-adjoint $(\infty,1)$-functors. This is itself locally presentable \end{prop} This is [[Higher Topos Theory|HTT, prop 5.5.3.8]] Notice that this makes the [[symmetric monoidal (∞,1)-category of presentable (∞,1)-categories]] \emph{[[closed monoidal category|closed]]} . \begin{prop} \label{}\hypertarget{}{} For $C$ an $(\infty,1)$-category with finite [[product]]s, the $(\infty,1)$-category $Alg_{(\infty,1)}(C)$ of algebras over $C$ regarded as an [[(∞,1)-algebraic theory]] is locally presentable. \end{prop} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Ho(CombModCat)]] \end{itemize} [[!include locally presentable categories - table]] \begin{itemize}% \item [[compactly generated (infinity,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The theory of locally presentable $(\infty,1)$-categories was first implicitly conceived in terms of [[model category]] presentations in \begin{itemize}% \item [[Carlos Simpson]], \emph{A Giraud-type characterization of the simplicial categories associated to closed model categories as $\infty$-pretopoi (\href{http://arxiv.org/abs/math/9903167}{arXiv:math/9903167})} \end{itemize} The full intrinsic $(\infty,1)$-categorical theory appears in section 5 \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} with section A.3.7 establishing the relation [[combinatorial model categories]] and \href{http://ncatlab.org/nlab/show/combinatorial+model+category#DuggerTheorem}{Dugger's theorem} in [[Higher Topos Theory|HTT, prop A.3.7.6]] The statement of \href{combinatorial+model+category#DuggerTheorem}{Dugger's theorem} of which the characterization of locally presentable $(\infty,1)$-categories as localizations of $(\infty,1)$-presheaf categories is a variant is due to \begin{itemize}% \item [[Dan Dugger]], \emph{[[Combinatorial model categories have presentations]]} \end{itemize} [[!redirects presentable (infinity,1)-categories]] [[!redirects presentable (∞,1)-category]] [[!redirects presentable (∞,1)-categories]] [[!redirects locally presentable (infinity,1)-category]] [[!redirects locally presentable (infinity,1)-categories]] [[!redirects locally presentable (∞,1)-category]] [[!redirects locally presentable (∞,1)-categories]] [[!redirects presentable (infinity,1)-category]] [[!redirects locally presentable infinity-category]] \end{document}