\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally presentable categories - introduction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{category_theory_2}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory_2} [[!include quasi-category theory contents]] \begin{quote}% This page means to give an introduction to the notion of \emph{[[locally presentable category]]}, and its related notions in [[higher category theory]] and survey some fundamental properties. Expected background of the reader: \begin{itemize}% \item For the first section \emph{\hyperlink{BasicIdea}{Basic idea in category theory}} the reader is assumed to be familiar with basic notions of [[category theory]] such as \emph{[[presheaves]]} and \emph{[[colimits]]}. \item For the section \emph{\hyperlink{BasicIdeaInModelCategoryTheory}{Basic idea in model category theory}} the reader is assumed to be familiar with basic notions in [[model category|model category theory]] such as \emph{[[cofibrantly generated model categories]]} and \emph{[[homotopy colimits]]}. \item For the third section \emph{\hyperlink{BasicIdeaInInfinityCategoryTheory}{Basic idea in (∞,1)-category theory}} the reader is assumed to be familiar with basic concepts of [[(∞,1)-category|(?.1)-category theory]] such as \emph{[[(∞,1)-categories of (∞,1)-presheaves]]} and \emph{[[(∞,1)-colimits]]}. \end{itemize} \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{BasicIdea}{Basic idea in category theory}\dotfill \pageref*{BasicIdea} \linebreak \noindent\hyperlink{generation_from_generators}{Generation from generators}\dotfill \pageref*{generation_from_generators} \linebreak \noindent\hyperlink{small_data}{Small data}\dotfill \pageref*{small_data} \linebreak \noindent\hyperlink{locally_presentable_category_generated_from_colimits_over_small_objects}{Locally presentable category: generated from colimits over small objects}\dotfill \pageref*{locally_presentable_category_generated_from_colimits_over_small_objects} \linebreak \noindent\hyperlink{generation_exhibited_by_epimorphism_from_a_free_object}{Generation exhibited by epimorphism from a free object}\dotfill \pageref*{generation_exhibited_by_epimorphism_from_a_free_object} \linebreak \noindent\hyperlink{left_exact_localizations}{Left exact localizations}\dotfill \pageref*{left_exact_localizations} \linebreak \noindent\hyperlink{summary}{Summary and overview}\dotfill \pageref*{summary} \linebreak \noindent\hyperlink{BasicIdeaInModelCategoryTheory}{Basic idea in model category theory}\dotfill \pageref*{BasicIdeaInModelCategoryTheory} \linebreak \noindent\hyperlink{model_structure_on_simplicial_presheaves}{Model structure on simplicial presheaves}\dotfill \pageref*{model_structure_on_simplicial_presheaves} \linebreak \noindent\hyperlink{left_bousfield_localization}{Left Bousfield localization}\dotfill \pageref*{left_bousfield_localization} \linebreak \noindent\hyperlink{combinatorial_model_categories}{Combinatorial model categories}\dotfill \pageref*{combinatorial_model_categories} \linebreak \noindent\hyperlink{duggers_theorem}{Dugger's theorem}\dotfill \pageref*{duggers_theorem} \linebreak \noindent\hyperlink{BasicIdeaInInfinityCategoryTheory}{Basic idea in $(\infty,1)$-category theory}\dotfill \pageref*{BasicIdeaInInfinityCategoryTheory} \linebreak \noindent\hyperlink{presheaves}{$(\infty,1)$-Presheaves}\dotfill \pageref*{presheaves} \linebreak \noindent\hyperlink{localizations_of_categories}{Localizations of $(\infty,1)$-categories}\dotfill \pageref*{localizations_of_categories} \linebreak \noindent\hyperlink{locally_presentable_categories}{Locally presentable $(\infty,1)$-categories}\dotfill \pageref*{locally_presentable_categories} \linebreak \noindent\hyperlink{toposes}{$(\infty,1)$-Toposes}\dotfill \pageref*{toposes} \linebreak \noindent\hyperlink{presentation_by_combinatorial_model_categories}{Presentation by combinatorial model categories}\dotfill \pageref*{presentation_by_combinatorial_model_categories} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{BasicIdea}{}\subsection*{{Basic idea in category theory}}\label{BasicIdea} The general idea is that a \emph{[[locally presentable category]]} is a [[large category]] [[generators and relations|generated from]] small data: from [[small objects]] under [[small colimit]]. \hypertarget{generation_from_generators}{}\subsubsection*{{Generation from generators}}\label{generation_from_generators} The notion of \emph{[[locally presentable category]]} is, at least roughly, an analogue for [[categories]] of the notion of a [[finitely generated module]]. \begin{example} \label{FinitelyGeneratedAbelianGroup}\hypertarget{FinitelyGeneratedAbelianGroup}{} An [[abelian group]] $A$ is called \emph{[[finitely generated module|finitely generated]]} if there is a [[finite set|finite]] [[subset]] \begin{displaymath} \iota \colon S \hookrightarrow U(A) \end{displaymath} of the underlying set $U(A)$ of $A$, such that every element of $A$ is a sum of such generating elements. \end{example} \begin{remark} \label{}\hypertarget{}{} We always have the maximal such presentation where $S = U(A)$ is the whole underlying set and $\iota \colon F(U(A)) \to A$ is the [[counit of an adjunction|counit]] of the [[free-forgetful adjunction]]. But the presentation is all the more interesting/useful the \emph{smaller} $S$ is. \end{remark} Now, the [[categorification]] of ``commutative sum'' is \emph{[[colimit]]}. Hence let now $\mathcal{C}$ be a category with all [[small colimits]]. \begin{defn} \label{GenerationOfCategoryFromSubcategoryUnderColimits}\hypertarget{GenerationOfCategoryFromSubcategoryUnderColimits}{} We say a subclass $S \hookrightarrow Obj(\mathcal{C})$ of [[objects]] or equivalently the [[full subcategory]] $\mathcal{C}^0 \hookrightarrow \mathcal{C}$ on this subclass \emph{generates} $\mathcal{C}$ if every object in $\mathcal{C}$ is a [[colimit]] of objects in $\mathcal{C}^0$, hence the colimit over a [[diagram]] of the form \begin{displaymath} D \to \mathcal{C}^0 \hookrightarrow \mathcal{C} \,. \end{displaymath} \end{defn} As before, such a presentation is all the more useful the ``smaller'' the generating data is. In order to grasp the various aspects of the notion of ``smallness'' in [[category theory]] we need to recall the notion of [[regular cardinal]]. \hypertarget{small_data}{}\subsubsection*{{Small data}}\label{small_data} \begin{defn} \label{}\hypertarget{}{} The [[cardinality]] $\kappa = {\vert S\vert}$ of a [[set]] $S$ is \emph{[[regular cardinal|regular]]} if every [[coproduct]]/[[disjoint union]] of sets of cardinality smaller than $\kappa$ and indexed by a set of cardinality smaller than $\kappa$ is itself of cardinality smaller than $\kappa$. \end{defn} \begin{example} \label{}\hypertarget{}{} The smallest [[regular cardinal]] is [[?]]${}_0 = {\vert \mathbb{N}\vert}$: every finite union of finite sets is itself a finite set. (See the entry on [[regular cardinal]]s for a discussion as to whether one might consider some finite cardinals as being `regular'.) \end{example} We can now speak of objects that are ``$\kappa$-small sums'' using the notion of $\kappa$-[[filtered colimits]]: \begin{defn} \label{}\hypertarget{}{} For $\kappa$ a [[regular cardinal]], a $\kappa$-[[filtered category]] is one where every [[diagram]] of size $\lt \kappa$ has a [[cocone]]. \end{defn} \begin{example} \label{}\hypertarget{}{} In an [[?]]${}_0$-[[filtered category]] every finite diagram has a cocone. This is equivalent to: \begin{enumerate}% \item for every pair of objects there is a third objct such that both have a morphism to it; \item for every pair of [[parallel morphisms]] there is a morphism out of their codomain such that the two composites are equal. \end{enumerate} \end{example} \begin{example} \label{}\hypertarget{}{} The [[tower diagram]] category $(\mathbb{N}, \leq)$ \begin{displaymath} X_0 \to X_1 \to X_2 \to \cdots \end{displaymath} is filtered. \end{example} \begin{remark} \label{}\hypertarget{}{} For $\lambda \gt \kappa$ a bigger [[regular cardinal]], every $\lambda$-[[filtered category]] is in particular also $\kappa$-filtered. \end{remark} Using this we have the central definition now: \begin{defn} \label{}\hypertarget{}{} A $\kappa$-[[filtered colimit]] is a [[colimit]] over a $\kappa$-filtered diagram. \end{defn} A crucial characterizing property of $\kappa$-filtered colimits is the following: \begin{prop} \label{FilteredColimitsAndFiniteLimits}\hypertarget{FilteredColimitsAndFiniteLimits}{} A colimit in [[Set]] is $\kappa$-filtered precisely if it commutes with all $\kappa$-[[small limits]]. In particular a colimit in [[Set]] is filtered (meaning: [[?]]${}_0$-filtered) precisely if it commutes with all [[finite limits]]. \end{prop} \begin{defn} \label{}\hypertarget{}{} An [[object]] $A \in \mathcal{C}$ is a $\kappa$-[[compact object]] if it commutes with $\kappa$-filtered colimits, hence if for $X \colon I \to \mathcal{C}$ any $\kappa$-[[filtered category|filtered]] [[diagram]], the canonical [[function]] \begin{displaymath} \underset{\to_i}{\lim} \mathcal{C}(A,X_i) \to \mathcal{C}(A, \underset{\to_i}{\lim} X_i) \end{displaymath} is a [[bijection]]. We say $X$ is a \textbf{[[small object]]} if it is $\kappa$-compact for \emph{some} [[regular cardinal]] $\kappa$. \end{defn} \begin{remark} \label{}\hypertarget{}{} If $\lambda \gt \kappa$, then being $\lambda$-compact is a weaker condition than being $\kappa$-compact. \end{remark} \begin{remark} \label{}\hypertarget{}{} The object $A$ commutes with the colimit over $I$ precisely if every morphism $A \to \underset{\to_i}{\lim} X_i$ lifts to a morphism $A \to X_j$ into one of the $X_j$. Schematically, depicting specifically a [[sequential colimit]], this means that we have: \begin{displaymath} \itexarray{ \cdots&\to&X_{j-1} &\to& X_j &\to& X_{j+1} &\to& \cdots \\ &&&{}^{\mathllap{\exists \hat f}}\nearrow&\downarrow & \swarrow \\ &&A& \stackrel{f}{\to} & \underset{\to}{\lim} X_i } \,. \end{displaymath} Hence $A$ is ``small enough'' such that mapping it into the sum of all the $X_i$ it always entirely lands inside one of the $X_i$. \end{remark} \begin{remark} \label{}\hypertarget{}{} There is a close relation between the notion of ``compact'' as in, on the one hand, \emph{[[compact topological space]]} and \emph{[[compact topos]]}, and on the other as in \emph{[[compact object]]} as above. This is mediated by proposition \ref{FilteredColimitsAndFiniteLimits}. But the relation is a bit more subtle and takes a bit more discussion than we maybe want to get into here. \end{remark} \hypertarget{locally_presentable_category_generated_from_colimits_over_small_objects}{}\subsubsection*{{Locally presentable category: generated from colimits over small objects}}\label{locally_presentable_category_generated_from_colimits_over_small_objects} Using this we can now say: \begin{defn} \label{LocallyPresentableCategory}\hypertarget{LocallyPresentableCategory}{} A [[locally small category]] $\mathcal{C}$ is a \emph{[[locally presentable category]]} if it has all small [[colimits]] and there is a [[small set]] $S \hookrightarrow Obj(\mathcal{C})$ of [[small objects]] such that this generates $\mathcal{C}$, by def. \ref{GenerationOfCategoryFromSubcategoryUnderColimits}. \end{defn} \begin{remark} \label{}\hypertarget{}{} The adjective ``locally'' in ``[[locally presentable category]]'' is to indicate that the condition is all about the [[objects]], only. There is a different notion of ``presented category''. \end{remark} There are a bunch of equivalent reformulations of the notion of locally presentable category. One of the more important ones we again motivate first by analogy with presentable modules: \hypertarget{generation_exhibited_by_epimorphism_from_a_free_object}{}\subsubsection*{{Generation exhibited by epimorphism from a free object}}\label{generation_exhibited_by_epimorphism_from_a_free_object} \begin{example} \label{}\hypertarget{}{} If an [[abelian group]] $A$ is generated by a set $S \hookrightarrow U(A)$ as in example \ref{FinitelyGeneratedAbelianGroup}, this means equivalently that there is an [[epimorphism]] \begin{displaymath} L \colon F(S) \to A \end{displaymath} from the [[free abelian group]] $F(S)$ generated by $S$, hence the group obtained by forming [[formal linear combination|formal sums]] of elements in $S$. Here the epimorphism sends formal sums to actual sums in $A$: \begin{displaymath} L(\sum_k s_k) \coloneqq \sum_k \iota(s_k) \,. \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} The [[categorification]] of the notion \emph{[[free abelian group]]} is the notion of \emph{[[free cocompletion]]} of a category $\mathcal{C}^0$: the [[category of presheaves]] $PSh(\mathcal{C}^0)$. \end{remark} Accordingly: \begin{example} \label{}\hypertarget{}{} If a [[full subcategory]] $\iota \colon \mathcal{C}^0 \hookrightarrow \mathcal{C}$ generates $\mathcal{C}$ under colimits as in defn. \ref{GenerationOfCategoryFromSubcategoryUnderColimits}, then there is a [[functor]] \begin{displaymath} L \colon PSh(\mathcal{C}^0) \to \mathcal{C} \end{displaymath} which sends formal colimits to actual colimits in $\mathcal{C}$ \begin{displaymath} L(\underset{\to_k}{\lim} s_k) \coloneqq \underset{\to_k}{\lim} \iota(s_k) \,. \end{displaymath} Here $L$ by construction preserves all colimits. \end{example} Therefore conversely, given a colimit-preserving functor $L \colon PSh(\mathcal{C}^0) \to \mathcal{C}$ we want to say that it \emph{locally presents} $\mathcal{C}$ if $L$ is ``suitably epi''. It turns out that ``suitably epi'' is to be the following: \begin{defn} \label{Localization}\hypertarget{Localization}{} A [[functor]] $L \colon PSh(\mathcal{C}^0) \to \mathcal{C}$ from the [[category of presheaves]] over a [[small category]] $\mathcal{C}^0$ is an \textbf{[[accessible functor|accessible]] [[localization]]} if \begin{itemize}% \item $L$ has a [[section]], hence a [[functor]] $R \colon \mathcal{C} \to PSh(\mathcal{C}^0)$ with a [[natural isomorphism]] $L\circ R \simeq id_{\mathcal{C}}$; \item such that \begin{enumerate}% \item $R$ is [[right adjoint]] to $L$; \item $R\circ L$ preserves $\kappa$-[[filtered colimits]]. \end{enumerate} \end{itemize} \end{defn} With this notion we have the following analog of the familiar statement that an abelian group is generated by $S$ precisely if there is an epimorphism $L \colon F(S) \to A$: \begin{theorem} \label{AdamekRosickyTheorem}\hypertarget{AdamekRosickyTheorem}{} A category $\mathcal{C}$ is locally presentable according to def. \ref{LocallyPresentableCategory} precisely if it is an accessible localization, def. \ref{Localization}, \begin{displaymath} L \colon PSh(\mathcal{C}^0) \to \mathcal{C} \end{displaymath} for some small category $\mathcal{C}^0$. \end{theorem} This is due to (\hyperlink{AdamekRosicky}{Ad\'a{}mek-Rosick\'y{}, prop 1.46}). \hypertarget{left_exact_localizations}{}\subsubsection*{{Left exact localizations}}\label{left_exact_localizations} \begin{remark} \label{}\hypertarget{}{} A [[locally presentable category]] $\mathcal{C}$ is called a \emph{[[topos]]}, precisely if the localization functor $L \colon PSh(\mathcal{C}^0) \to \mathcal{C}$ from theorem \ref{AdamekRosickyTheorem} in addition is a [[left exact functor]], meaning that it preserves [[finite limits]]. \end{remark} \hypertarget{summary}{}\subsection*{{Summary and overview}}\label{summary} In summary the discussion \hyperlink{BasicIdea}{above} says that the notion of locally presentable categories sits in a sequence of notions as indicated in the row labeled ``category theory'' in the following table. The other rows are supposed to indicate that regarding a category as a [[(1,1)-category]] and simply varying in this story the parameters $(n,r)$ in ``[[(n,r)-category]]'' one obtains fairly straightforward analogs of the notion of locally presentable category in other fragments of [[higher category theory]]. These we discuss in more detail further below. \textbf{Locally presentable categories:} [[large categories|Large categories]] whose [[objects]] arise from [[small object|small]] [[generators]] under [[small colimit|small]] [[relations]]. \newline | \textbf{[[(0,1)-category theory]]} | [[(0,1)-toposes]] | $\hookrightarrow$ | [[algebraic lattices]] | $\simeq$ \href{algebraic+lattice#RelationToLocallyFinitelyPresentableCategories}{Porst's theorem} | [[subobject lattices]] in [[accessible functor|accessible]] [[reflective subcategories]] of [[presheaf categories]] | | | | \textbf{[[category theory]]} | [[toposes]] | $\hookrightarrow$ | [[locally presentable categories]] | $\simeq$ \hyperlink{AdamekRosickyTheorem}{Ad\'a{}mek-Rosick\'y{}`s theorem} | [[accessible functor|accessible]] [[reflective subcategories]] of [[presheaf categories]] | $\hookrightarrow$ | [[accessible categories]] | | \textbf{[[model category|model category theory]]} | [[model toposes]] | $\hookrightarrow$ | [[combinatorial model categories]] | $\simeq$ \hyperlink{DuggerTheorem}{Dugger's theorem} | [[left Bousfield localization]] of global [[model structures on simplicial presheaves]] | | | | \textbf{[[(∞,1)-topos theory]]} | [[(∞,1)-toposes]] |$\hookrightarrow$ | [[locally presentable (∞,1)-categories]] | $\simeq$ \hyperlink{SimpsonTheorem}{Simpson's theorem} | [[accessible (∞,1)-functor|accessible]] [[reflective sub-(∞,1)-categories]] of [[(∞,1)-presheaf (∞,1)-categories]] | $\hookrightarrow$ |[[accessible (∞,1)-categories]] | \hypertarget{BasicIdeaInModelCategoryTheory}{}\subsection*{{Basic idea in model category theory}}\label{BasicIdeaInModelCategoryTheory} \hypertarget{model_structure_on_simplicial_presheaves}{}\subsubsection*{{Model structure on simplicial presheaves}}\label{model_structure_on_simplicial_presheaves} The analog of a [[category of presheaves]] in [[model category]] theory is the [[model structure on simplicial presheaves]], which we now briefly indicate. Write [[sSet]] for the category of [[simplicial sets]]. Here we always regard this as equipped with the standard [[model structure on simplicial sets]] $sSet_{Quillen}$. \begin{defn} \label{}\hypertarget{}{} For $C$ a [[small category]] write $[C^{op}, sSet]\simeq [C^{op}, Set]^{\Delta^{op}}$ for the category of [[simplicial presheaves]]. The \textbf{global projective [[model structure on simplicial presheaves]]} $[C^{op}, sSet]_{proj}$ has as \begin{itemize}% \item [[weak equivalences]] the objectwise [[weak homotopy equivalences]] of simplicial sets \item [[fibrations]] the objectwise [[Kan fibrations]]. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} Accordingly $[C^{op}, sSet]$ is a [[cofibrantly generated model category]] with generating (acyclic) cofibrations the [[tensoring]] of objects of $C$ with the generating (acyclic) cofibrations of $sSet_{Quillen}$. \end{remark} \hypertarget{left_bousfield_localization}{}\subsubsection*{{Left Bousfield localization}}\label{left_bousfield_localization} \begin{defn} \label{BousfieldLocalizationOfModelStructureOnSimplicialPresheaves}\hypertarget{BousfieldLocalizationOfModelStructureOnSimplicialPresheaves}{} Given a [[model category]] $[C^{op}, Set]_{proj}$ and set $\mathcal{S} \subset Mor([C^{op}, Set])$ of morphisms, the [[Bousfield localization of model categories|left Bousfield localization]] is the model structure with the same cofibrations and weak equivalences the $\mathcal{S}$-[[local morphisms]]. \begin{displaymath} [C^{op}, Set]_{proj,\mathcal{S}} \stackrel{\overset{id}{\leftarrow}}{\underset{id}{\to}} [C^{op}, Set]_{proj} \,. \end{displaymath} \end{defn} \hypertarget{combinatorial_model_categories}{}\subsubsection*{{Combinatorial model categories}}\label{combinatorial_model_categories} The simple idea of the following definition is to say that the model category analog of \emph{[[locally presentable category]]} is simply a model structure on a locally presentable category. \begin{defn} \label{CombinatorialModelCategory}\hypertarget{CombinatorialModelCategory}{} A model category is a \textbf{[[combinatorial model category]]} if \begin{enumerate}% \item the underlying category is a [[locally presentable category]]; \item the model structure is a [[cofibrantly generated model category]]. \end{enumerate} \end{defn} \hypertarget{duggers_theorem}{}\subsubsection*{{Dugger's theorem}}\label{duggers_theorem} \begin{theorem} \label{DuggerTheorem}\hypertarget{DuggerTheorem}{} Every [[combinatorial model category]], def. \ref{CombinatorialModelCategory}, is [[Quillen equivalence|Quillen equivalent]] to a [[Bousfield localization of model categories|left Bousfield localization]] of a global [[model structure on simplicial presheaves]] as in def. \ref{BousfieldLocalizationOfModelStructureOnSimplicialPresheaves}. \end{theorem} See at \href{combinatorial%20model%20category#DuggerTheorem}{combinatorial model category - Dugger's theorem}. \hypertarget{BasicIdeaInInfinityCategoryTheory}{}\subsection*{{Basic idea in $(\infty,1)$-category theory}}\label{BasicIdeaInInfinityCategoryTheory} \hypertarget{presheaves}{}\subsubsection*{{$(\infty,1)$-Presheaves}}\label{presheaves} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{C}$ and $\mathcal{D}$ two [[(∞,1)-categories]] and $\mathcal{C}_{s}, \mathcla{D}_s \in sSet$ two models as [[quasi-categories]], an [[(∞,1)-functor]] $F \colon \mathcal{C} \to \mathcal{D}$ is simply a homomorphism of simplicial set $\mathcal{C}_s \to \mathcal{D}_s$. The [[(∞,1)-category of (∞,1)-functors]] $Func(\mathcal{C}, \mathcal{D})_s$ as a [[quasi-category]] is simply the [[hom object]] of simplicial set \begin{displaymath} Func(\mathcal{C}, \mathcal{D})_s = sSet(\mathcal{C}_s, \mathcal{D}_s) \in QuasiCat \hookrightarrow sSet \,. \end{displaymath} \end{defn} \begin{defn} \label{InfinityPresheaves}\hypertarget{InfinityPresheaves}{} For $\mathcal{D}$ an [[(∞,1)-category]], the \textbf{[[(∞,1)-category of (∞,1)-presheaves]]} on $\mathcal{D}$ is the functor category \begin{displaymath} PSh_\infty(\mathcal{D}) = Func(\mathcal{D}^{op}, \infty Grpd) \end{displaymath} out of the [[opposite (∞,1)-category]] of $\mathcal{D}$ into the [[∞Grpd|(∞,1)-category of ∞-groupoids]]. \end{defn} \hypertarget{localizations_of_categories}{}\subsubsection*{{Localizations of $(\infty,1)$-categories}}\label{localizations_of_categories} The notions of [[adjoint functors]], [[full and faithful functors]] etc. have straightforward, essentially verbatim generalizations to $(\infty,1)$-categories: \begin{defn} \label{}\hypertarget{}{} A pair of [[(∞,1)-functors]] \begin{displaymath} C \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} D \end{displaymath} is a pair of \textbf{[[adjoint (∞,1)-functors]]}, if there exists a \emph{unit transformation} $\epsilon : Id_C \to R \circ L$ -- a morphism in the [[(∞,1)-category of (∞,1)-functors]] $Func(C,D)$ -- such that for all $c \in C$ and $d \in D$ the induced morphism \begin{displaymath} Hom_C(L(c),d) \stackrel{R_{L(c), d}}{\to} Hom_D(R(L(c)), R(d)) \stackrel{Hom_D(\epsilon, R(d))}{\to} Hom_D(c,R(d)) \end{displaymath} is an [[equivalence of ∞-groupoids]]. \end{defn} \begin{defn} \label{}\hypertarget{}{} An [[(∞,1)-functor]] $F \colon \mathcal{C} \to \mathcal{D}$ is a \textbf{[[full and faithful (∞,1)-functor]]} if for all objects $X,Y \in \mathcal{C}$ the component \begin{displaymath} F_{X,Y} \colon \mathcal{C}(X,Y) \stackrel{\simeq}{\to} \mathcal{D}(F(X), F(Y)) \end{displaymath} is an [[equivalence of ∞-groupoids]]. \end{defn} \begin{defn} \label{ReflectiveLocalization}\hypertarget{ReflectiveLocalization}{} A [[reflective sub-(∞,1)-category]] $\mathcal{C} \hookrightarrow \mathcal{D}$ is a [[full and faithful (∞,1)-functor]] with a left [[adjoint (∞,1)-functor]]. \end{defn} \hypertarget{locally_presentable_categories}{}\subsubsection*{{Locally presentable $(\infty,1)$-categories}}\label{locally_presentable_categories} We have then the essentially verbatim analog of the situation for ordinary categories: \begin{defn} \label{LocallyPresentableInfinityCategory}\hypertarget{LocallyPresentableInfinityCategory}{} An [[(∞,1)-category]] $\mathcal{C}$ is a \textbf{[[locally presentable (∞,1)-category]]} if there exists a [[small set]] of objects such that the [[full sub-(∞,1)-category]] $\mathcal{C}^0 \hookrightarrow \mathcal{C}$ on it generates $\mathcal{C}$ under [[(∞,1)-colimits]]. \end{defn} And the equivalent characterization is now as before \begin{theorem} \label{SimpsonTheorem}\hypertarget{SimpsonTheorem}{} An [[(∞,1)-category]] is a [[locally presentable (∞,1)-category]], def. \ref{LocallyPresentableInfinityCategory}, precisely if it is [[equivalence of (∞,1)-categories|equivalent]] to [[localization of an (∞,1)-category|localization]], def. \ref{ReflectiveLocalization}, \begin{displaymath} \mathcal{C} \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\hookrightarrow}} PSh_\infty(\mathcal{C}^0) \end{displaymath} of an [[(∞,1)-category of (∞,1)-presheaves]], def. \ref{InfinityPresheaves}, such that $R \circ L$ preserves $\kappa$-[[filtered (∞,1)-colimits]] for some [[regular cardinal]] $\kappa$. \end{theorem} This appears as \hyperlink{Lurie}{Lurie, theorem 5.5.1.1}, attributed there to [[Carlos Simpson]]. \hypertarget{toposes}{}\subsubsection*{{$(\infty,1)$-Toposes}}\label{toposes} As before, if a locally presentable $(\infty,1)$-category arises as the [[localization of an (∞,1)-category|localization]] $L \colon PSh_\infty(\mathcal{C}^0) \to \mathcal{C}$ of a [[left exact (∞,1)-functor]], then it is an [[(∞,1)-topos]]. \hypertarget{presentation_by_combinatorial_model_categories}{}\subsubsection*{{Presentation by combinatorial model categories}}\label{presentation_by_combinatorial_model_categories} There is a close match between the theory of [[combinatorial model categories]] and [[locally presentable (∞,1)-categories]]. \begin{theorem} \label{}\hypertarget{}{} Every [[locally presentable (∞,1)-category]] arises, up to [[equivalence of (∞,1)-categories]], as the [[simplicial localization]] of a [[combinatorial model category]]. \end{theorem} This is part of \hyperlink{Lurie}{Lurie, theorem 5.5.1.1}. Accordingly, every [[simplicial Quillen adjunction]] between [[combinatorial model categories]] gives rise to a pair of [[adjoint (∞,1)-functors]] between the corresponding locally presentable $(\infty,1)$-categories. Hence a [[left Bousfield localization]] of a [[model structure on simplicial presheaves]] presents a corresponding localization of an [[(∞,1)-category of (∞,1)-presheaves]] to a [[locally presentable (∞,1)-category]]. \begin{displaymath} \itexarray{ \mathcal{C} &\stackrel{\overset{}{\leftarrow}}{\hookrightarrow}& PSh_\infty(C) \\ \left[C^{op}, sSet\right]_{proj,\mathcal{S}} &\stackrel{\overset{id}{\leftarrow}}{\underset{id}{\to}}& [C^{op}, sSet]_{proj} } \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} The standard textbook for [[locally presentable categories]] is \begin{itemize}% \item [[Jiří Adámek]], [[Jiří Rosický]], \emph{[[Locally presentable and accessible categories]]}, Cambridge University Press, (1994) \end{itemize} Decent accounts of [[combinatorial model categories]] include secton A.2.6 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} and \begin{itemize}% \item [[Clark Barwick]], \emph{On (Enriched) Left Bousfield Localization of Model Categories} (\href{http://arxiv.org/abs/0708.2067}{arXiv:0708.2067}) \end{itemize} The standard text for [[locally presentable (∞,1)-categories]] is section 5 of \hyperlink{Lurie}{Lurie}. \end{document}