\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{locally representable structured (infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{affine_schemes}{Affine $\mathcal{G}$-schemes}\dotfill \pageref*{affine_schemes} \linebreak \noindent\hyperlink{schemes}{$\mathcal{G}$-Schemes}\dotfill \pageref*{schemes} \linebreak \noindent\hyperlink{smooth_schemes}{Smooth $\mathcal{G}$-schemes}\dotfill \pageref*{smooth_schemes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ordinary_schemes}{Ordinary schemes}\dotfill \pageref*{ordinary_schemes} \linebreak \noindent\hyperlink{ordinary_delignemumford_stacks}{Ordinary Deligne-Mumford stacks}\dotfill \pageref*{ordinary_delignemumford_stacks} \linebreak \noindent\hyperlink{derived_schemes}{Derived schemes}\dotfill \pageref*{derived_schemes} \linebreak \noindent\hyperlink{derived_smooth_manifolds}{Derived smooth manifolds}\dotfill \pageref*{derived_smooth_manifolds} \linebreak \noindent\hyperlink{derived_delignemumford_stacks}{Derived Deligne-Mumford stacks}\dotfill \pageref*{derived_delignemumford_stacks} \linebreak \noindent\hyperlink{derived_schemes_with_ring_valued_structure_sheaves}{Derived schemes with $E_\infty$-ring valued structure sheaves}\dotfill \pageref*{derived_schemes_with_ring_valued_structure_sheaves} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathcal{G}$ a [[geometry (for structured (∞,1)-toposes)]] a $\mathcal{G}$-[[structured (∞,1)-topos]] $(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ is \emph{locally representable} if it is locally equivalent to $Spec U$ for $U \in Pro(\mathcal{G})$ (the [[pro-objects in an (∞,1)-category]]), or $U \in \mathcal{G}$ itself if it is \emph{locally finite presented} . This generalizes \begin{itemize}% \item the notion of [[smooth manifold]] from [[differential geometry]]; \item the notion of [[scheme]] from [[algebraic geometry]]. \item etc. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{G}$ be a [[geometry (for structured (∞,1)-toposes)]]. Write $\mathcal{G}_0$ for the underlying discrete geometry. The identity functor \begin{displaymath} p : \mathcal{G}_0 \to \mathcal{G} \end{displaymath} is then a morphism of geometries. Recall the notation $LTop(\mathcal{G})$ for the [[(∞,1)-category]] of $\mathcal{G}$-[[structured (∞,1)-topos]]es and [[geometric morphism]]s between them. \hypertarget{affine_schemes}{}\subsubsection*{{Affine $\mathcal{G}$-schemes}}\label{affine_schemes} \begin{theorem} \label{}\hypertarget{}{} There is a pair of [[adjoint (∞,1)-functor]]s \begin{displaymath} p^* : LTop(\mathcal{G}) \stackrel{\leftarrow}{\to} LTop(\mathcal{G}_0) : \mathbf{Spec}_{\mathcal{G}_0}^{\mathcal{G}} \end{displaymath} with $\mathbf{Spec}_{\mathcal{G}_0}^{\mathcal{G}}$ left adjoint to the canonical functor $p^*$ given by precomposition with $p$. \end{theorem} \begin{remark} \label{}\hypertarget{}{} There is a canonical morphism \begin{displaymath} can : Pro(\mathcal{G})^{op} \to LTop(\mathcal{G}_0) \end{displaymath} \end{remark} \begin{defn} \label{}\hypertarget{}{} Write $\mathbf{Spec}^{\mathcal{G}}$ for the [[(∞,1)-functor]] \begin{displaymath} \mathbf{Spec}^{\mathcal{G}} : Pro(\mathcal{G})^{op} \stackrel{can}{\to} LTop(\mathcal{G}_0) \stackrel{ \mathbf{Spec}_{\mathcal{G}_0}^{\mathcal{G}} }{\to} LTop(\mathcal{G}) \,. \end{displaymath} A $\mathcal{G}$-[[structured (∞,1)-topos]] in the image of this functor is an \textbf{affine $\mathcal{G}$-scheme}. \end{defn} \hypertarget{schemes}{}\subsubsection*{{$\mathcal{G}$-Schemes}}\label{schemes} \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{G}$ be a [[geometry (for structured (∞,1)-toposes)]]. A $\mathcal{G}$-[[structured (∞,1)-topos]] $(\mathcal{X},\mathcal{O}_{\mathcal{X}})$ is a \textbf{$\mathcal{G}$-scheme} if \begin{itemize}% \item there exists a collection $\{U_i \in \mathcal{X}\}$ \end{itemize} such that \begin{itemize}% \item the $\{U_i\}$ cover $\mathcal{X}$ in that the canonical morphism $\coprod_i U_i \to {*}$ (with ${*}$ the [[terminal object]] of $\mathcal{X}$) is an [[effective epimorphism]]; \item for every $U_i$ there exists an equivalence \begin{displaymath} (\mathcal{X}/{U_i}, \mathcal{O}_{\mathcal{X}}|_{U_i}) \simeq \mathbf{Spec}^{\mathcal{G}} A_i \end{displaymath} of structured $(\infty,1)$-toposes for some $A_i \in Pro(\mathcal{G})$ (in the [[(∞,1)-category]] of [[pro-object]]s of $\mathcal{G}$). \end{itemize} \end{defn} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{T}$ a pregeometry, a $\mathcal{T}$-[[structured (infinity,1)-topos]] $(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ is a \textbf{$\mathcal{T}$-scheme} if it is a $\mathcal{G}$-scheme for [[generalized the|the]] geometric envelope $\mathcal{G}$ of $\mathcal{T}$. This means that for $f : \mathcal{T} \to \mathcal{G}$ [[generalized the|the]] geometric envelope and for $\mathcal{O}'_{\mathcal{X}}$ [[generalized the|the]] $\mathcal{G}$-structure on $\mathcal{X}$ such that $\mathcal{O}_{\mathcal{X}} \simeq \mathcal{O}'_{\mathcal{X}} \circ f$, we have that $(\mathcal{X}, \mathcal{O}'_{\mathcal{X}})$ is a $\mathcal{G}$-scheme. \end{defn} \hypertarget{smooth_schemes}{}\subsubsection*{{Smooth $\mathcal{G}$-schemes}}\label{smooth_schemes} Let $\Tau$ be a [[pregeometry (for structured (∞,1)-toposes)]] and let $\Tau \hookrightarrow \mathcal{G}$ be an inclusion into an enveloping [[geometry (for structured (∞,1)-toposes)]]. We think of the objects of $\Tau$ as the \emph{smooth} test spaces -- for instance the [[cartesian product]]s of some affine line $R$ with itsef -- and of the objects of $\mathcal{G}$ as affine test spaces that may have singular points where they are not smooth. The idea is that a \emph{smooth} $\mathcal{G}$-scheme is a $\mathcal{G}$-structured space that is locally not only equivalent to objects in $\mathcal{G}$, but even to the very nice -- ``smooth'' -- objects in $\mathcal{Tau}$. \begin{defn} \label{}\hypertarget{}{} With an envelope $\Tau \hookrightarrow \mathcal{G}$ fixed, a $\mathcal{G}$-scheme is called \textbf{smooth} if there the affine schemes $\mathbf{Spec}^{\mathcal{G}} A_i$ appearing in its definition may be chosen with $A_i$ in the image of the includion $\tau \hookrightarrow \mathcal{G}$. \end{defn} \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \hypertarget{ordinary_schemes}{}\paragraph*{{Ordinary schemes}}\label{ordinary_schemes} See the discussion at [[derived scheme]] for how ordinary [[scheme]]s are special cases of [[generalized scheme]]s. \hypertarget{ordinary_delignemumford_stacks}{}\paragraph*{{Ordinary Deligne-Mumford stacks}}\label{ordinary_delignemumford_stacks} See the discussion at [[derived Deligne-Mumford stack]] for how ordinary [[Deligne-Mumford stack]]s are special cases of [[derived Deligne-Mumford stack]]s. \hypertarget{derived_schemes}{}\paragraph*{{Derived schemes}}\label{derived_schemes} \begin{defn} \label{}\hypertarget{}{} Let $k$ be a commutative ring. Recall the pregoemtry $\mathcal{T}_{Zar}(k)$. A \textbf{[[derived scheme]]} over $k$ is a $\mathcal{T}_{Zar}(k)$-scheme. \end{defn} \hypertarget{derived_smooth_manifolds}{}\paragraph*{{Derived smooth manifolds}}\label{derived_smooth_manifolds} \begin{itemize}% \item [[derived smooth manifold]]. \end{itemize} \hypertarget{derived_delignemumford_stacks}{}\paragraph*{{Derived Deligne-Mumford stacks}}\label{derived_delignemumford_stacks} \begin{defn} \label{}\hypertarget{}{} Let $k$ be a commutative ring. Recall the pregeometry $\mathcal{T}_{et}(k)$ A \textbf{[[derived Deligne-Mumford stack]]} over $k$ is a $\mathcal{T}_{et}(k)$-scheme. \end{defn} \hypertarget{derived_schemes_with_ring_valued_structure_sheaves}{}\paragraph*{{Derived schemes with $E_\infty$-ring valued structure sheaves}}\label{derived_schemes_with_ring_valued_structure_sheaves} The above [[derived scheme]]s have structure sheaves with values in [[simplicial object|simplicial]] commutative rings. There is also a notion of derived scheme whose structure sheaf takes values in [[E-infinity ring]]s. The theory of these is to be described in full detail in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Spectral Schemes]]} . \end{itemize} An indication of some details is in \begin{itemize}% \item [[Paul Goerss]], \emph{[[Topological Algebraic Geometry - A Workshop]]} \end{itemize} See at \emph{[[E-∞ scheme]]} and \emph{[[E-∞ geometry]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[geometry (for structured (∞,1)-toposes)]] \item [[structured (∞,1)-topos]] \item \textbf{locally representable structured (∞,1)-topos} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Generalized schemes are definition 2.3.9 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Structured Spaces|Derived Algebraic Geometry V - Structured Spaces]]} \end{itemize} The definition of affine $\mathcal{G}$-schemes (absolute spectra) is in section 2.2. [[!redirects locally representable structured (∞,1)-topos]] [[!redirects locally representable structured (∞,1)-toposes]] [[!redirects locally representable structured (infinity,1)-toposes]] \end{document}