\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{logarithm} \hypertarget{logarithms}{}\section*{{Logarithms}}\label{logarithms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{logarithms_of_real_numbers}{Logarithms of real numbers}\dotfill \pageref*{logarithms_of_real_numbers} \linebreak \noindent\hyperlink{logarithms_of_complex_numbers}{Logarithms of complex numbers}\dotfill \pageref*{logarithms_of_complex_numbers} \linebreak \noindent\hyperlink{logarithms_and_lie_groups}{Logarithms and Lie groups}\dotfill \pageref*{logarithms_and_lie_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Classically, a logarithm is a [[partial function|partially-defined]] [[smooth map|smooth]] [[homomorphism]] from a multiplicative [[group]] of [[number]]s to an additive group of numbers. As such, it is a [[local section]] of an [[exponential map]]. As exponential maps can be generalised to [[Lie groups]], so can logarithms. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{logarithms_of_real_numbers}{}\subsubsection*{{Logarithms of real numbers}}\label{logarithms_of_real_numbers} Consider the [[field]] of [[real numbers]]; these numbers form a [[Lie group]] under addition (which we will call simply $\mathbb{R}$), while the nonzero numbers form a Lie group under multiplication (which we will call $\mathbb{R}^*$). The multiplicative group has two [[connected components]]; we will focus attention on the [[identity component]] (which we will call $\mathbb{R}^+$), consisting of the positive numbers. The Lie groups $\mathbb{R}$ and $\mathbb{R}^+$ are in fact [[isomorphic]]. In fact, there is one isomorphism for each positive real number $b$ other than $1$; this number $b$ is called the \textbf{base}. Fixing a base, the map from $\mathbb{R}^+$ to $\mathbb{R}$ is called the \textbf{real logarithm with base $b$}, written $x \mapsto \log_b x$; the map from $\mathbb{R}$ to $\mathbb{R}^+$ is the \textbf{real [[exponential map]] with base $b$}, written $x \mapsto b^x$. The real logarithms are handily defined using the [[Riemann integral]] as follows: \begin{equation} \array { \ln x & \coloneqq \int_1^x \frac{1}{t} \,\mathrm{d}t ;\\ \log_b x & \coloneqq \frac{\ln x}{\ln b} .\\ } \label{integrals}\end{equation} Note that $\ln$ is itself a logarithm, the \textbf{natural logarithm}, whose base is $\mathrm{e} = 2.71828182845\ldots$. (The exponential map may similarly be defined as an infinite series, but I'll leave that for its own article.) \hypertarget{logarithms_of_complex_numbers}{}\subsubsection*{{Logarithms of complex numbers}}\label{logarithms_of_complex_numbers} Now consider the [[field]] of [[complex numbers]]; these also form a [[Lie group]] under addition (which we call $\mathbb{C}$), while the nonzero numbers form a Lie group under multiplication (which we call $\mathbb{C}^*$). Now the multiplicative group is [[connected space|connected]], so we would like to use all of it. However, $\mathbb{C}$ and $\mathbb{C}^*$ are \emph{not} [[isomorphic]]. Indeed, the multiplication map \begin{displaymath} \mathbb{R}^* \times S^1 \to \mathbb{C}^* \end{displaymath} exhibits $\mathbb{C}^*$ as a [[biproduct]] of $\mathbb{R}^*$ and the [[circle group]] $S^1$, so that homomorphisms $\mathbb{C}^* \to \mathbb{C}$ are given by pairs of homomorphisms $f \colon \mathbb{R}^* \to \mathbb{C}$, $g \colon S^1 \to \mathbb{C}$. But every homomorphisms $g \colon S^1 \to \mathbb{C}$ is trivial: the restriction of $g$ to the [[torsion subgroup]] of $S^1$ is trivial since $\mathbb{C}$ is torsionfree, and since the torsion subgroup is dense in $S^1$, any Lie group homomorphism $S^1 \to \mathbb{C}$ must also be trivial. Therefore, every homomorphism $h \colon \mathbb{C}^* \to \mathbb{C}$ factors through the projection $\mathbb{C}^* \to \mathbb{R}^*$. It quickly follows that no such $h$ can be injective, nor can such $h$ be surjective. Taking advantage of biproduct representations $\mathbb{C} \cong \mathbb{R} \oplus \mathbb{R}$ and $\mathbb{C}^* \cong \mathbb{R}^* \oplus S^1$, we can classify homomorphisms from $\mathbb{C}$ to $\mathbb{C}^*$. Each is given by a 4-tuple of real numbers $(a, b, c, d)$: \begin{displaymath} \phi_{a, b, c, d}(x + i y) = e^{a x} e^{i b x} e^{c y} e^{i d y}. \end{displaymath} The cases where $a = d$, $b = -c$ correspond to those homomorphisms that are [[holomorphic functions]] (i.e., that satisfy the [[Cauchy-Riemann equations]]). Putting $w = a + b i$, we have \begin{displaymath} \phi_{a, b, -b, a}(z) = e^{w z} \end{displaymath} with one such homomorphism for each complex number $w$, and these homomorphisms are [[surjections]] whenever $w \ne 0$. (N.B.: these homomorphisms are not uniquely determined by their values at $z = 1$, since we have $e^w = e^{w'}$ whenever $w - w'$ is an integer multiple of $2 \pi i$, and yet the homomorphisms $z \mapsto e^{w z}$ and $z \mapsto e^{w' z}$ will be different unless $w = w'$.) So we have these surjections (the \textbf{complex [[exponential map]]} $z \mapsto e^{w z}$, for $w \ne 0$), which are [[regular epimorphisms]] but not [[split epimorphisms]]. However, while they have no [[sections]] (being not split), they have quite a few [[local sections]], and the [[domains]] of the [[maximal local sections]] are precisely the [[connected space|connected]] [[simply connected space|simply connected]] [[open subspace|open]] [[dense subspace|dense]] subspaces $R$ of $\mathbb{C}^*$. A \textbf{complex logarithm with exponential base $w$ on $R$} is this $R$-defined section of the complex exponential map $z \mapsto e^{w z}$. Supposing $R$ given, we denote this by $\log_{[w]}$ (but please note that in the context of real logarithms, this would ordinarily be denoted $\log_b$ where $b = e^w$). If $1 \in R$, then a complex natural logarithm on $R$ may be defined using the [[contour integral]] with the same formula \eqref{integrals} as for the real natural logarithm. We merely insist that the integral be done along a contour within the region $R$. (Since $R$ is connected, there is such a contour; since $R$ is simply connected and $t \mapsto 1/t$ is [[holomorphic map|holomorphic]], the result is unique.) Note that if $x \in \mathbb{R}^+ \subseteq R$, then the real and complex natural logarithms of $x$ will be equal. The natural exponential map is [[periodic function|periodic]] (with period $2 \pi \mathrm{i}$), and it is possible to add any multiple of this period to the natural logarithm of any $x \ne 1$ by suitably changing the region $R$. We then obtain the most general notion of maximally-defined complex logarithm with any base by using the formulas \begin{displaymath} \array { \ln x & \coloneqq C + \int_{\mathrm{e}^C}^x \frac{1}{t} \,\mathrm{d}t,\\ \log_{[w]} x & \coloneqq \frac{\ln x}{w} .\\ } \end{displaymath} \hypertarget{logarithms_and_lie_groups}{}\subsubsection*{{Logarithms and Lie groups}}\label{logarithms_and_lie_groups} In the classical examples, the multiplicative groups $\mathbb{R}^+$ and $\mathbb{C}^*$ both [[Lie groups]]. The additive groups $\mathbb{R}$ and $\mathbb{C}$ are also Lie groups, but they are more than this: they are [[Lie algebras]]. (The additive group of a Lie algebra is always a Lie group. Actually, since these are [[abelian Lie algebras]], their Lie-algebra structure is easy to miss, but of course they are [[vector spaces]].) And what's more, each additive group is \emph{the} Lie algebra of the corresponding Lie group. This generalises. Given any [[Lie group]] $G$, let $\mathfrak{g}$ be its [[Lie algebra]]. Then we have an [[exponential map]] $\exp\colon \mathfrak{g} \to G$, which is [[surjection|surjective]] under certain conditions (most famously when $G$ is [[connected space|connected]] and [[compact space|compact]], but also in the classical cases, even though $G$ is not compact). More generally, given any [[automorphism]] $\phi$ of $\mathfrak{g}$, we have a map $x \mapsto \exp(\phi(x))$, which is a [[homomorphism]] of Lie groups. Any [[local section]] of this map may be called a \textbf{logarithm base $\phi$} on $G$ (denoted $\log_{[\phi]}$ with the bracket as in the previous section); any local section of $\exp$ itself may be called a \textbf{natural logarithm} on $G$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[logarithmic integral function]] \item [[logarithmic cohomology operation]] \end{itemize} [[!redirects logarithm]] [[!redirects logarithms]] [[!redirects logarithmic]] [[!redirects natural logarithm]] [[!redirects natural logarithms]] \end{document}