\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{logarithmic cohomology operation} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ActionOnCohomologyGroups}{Action on cohomology groups}\dotfill \pageref*{ActionOnCohomologyGroups} \linebreak \noindent\hyperlink{explicit_formula_in_terms_of_power_operations}{Explicit formula in terms of power operations}\dotfill \pageref*{explicit_formula_in_terms_of_power_operations} \linebreak \noindent\hyperlink{relation_to_the_stringorientation_of_}{Relation to the string-orientation of $tmf$}\dotfill \pageref*{relation_to_the_stringorientation_of_} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In analogy to how in ordinary [[algebra]] the natural [[logarithm]] of [[positive number|positive]] [[rational numbers]] is a [[group]] [[homomorphism]] from the [[group of units]] to the completion of the rationals by the (additive) [[real numbers]] \begin{displaymath} log \;\colon\; \mathbb{Q}^\times_{\gt 0}\longrightarrow \mathbb{R} \end{displaymath} so in [[higher algebra]] for $E$ an [[E-∞ ring]] there is a natural homomorphism \begin{displaymath} \ell_{n,p} \;\colon\; gl_1(E) \longrightarrow L_{K(n)} E \end{displaymath} from the [[∞-group of units]] of $E$ to the [[K(n)-local spectrum]] obtained from $E$ (see \hyperlink{Rezk06}{Rezk 06, section 1.7}). On the [[cohomology theory]] [[Brown representability theorem|represented]] by $E$ this induces a [[cohomology operation]] called, therefore, the ``logarithmic cohomology operation''. More in detail, for $X$ the [[homotopy type]] of a [[topological space]], then the [[cohomology]] [[Brown representability theorem|represented]] by $gl_1(E)$ in degree 0 is the ordinary [[group of units]] in the [[cohomology ring]] of $E$: \begin{displaymath} H^0(X, gl_1(E)) \simeq (E^0(X))^\times \,. \end{displaymath} In positive degree the canonical map of pointed homotopy types $GL_1(E) = \Omega^\infty gl_1(E) \to \Omega^\infty E$ is in fact an [[isomorphism]] on all [[homotopy groups]] \begin{displaymath} \pi_{\bullet \geq 1} GL_1(E) \simeq \pi_{\bullet \geq 1} \Omega^\infty E \,. \end{displaymath} On cohomology elements this map \begin{displaymath} \pi_q(gl_1(E)) \simeq \tilde H^0(S^q, gl_1(E)) \simeq (1+ \tilde R^0(S^q))^\times \subset (R^0(S^q))^\times \end{displaymath} is [[logarithm]]-like, in that it sends $1 + x \mapsto x$. But there is not a homomorphism of [[spectra]] of this form. This only exists after [[K(n)-local stable homotopy theory|K(n)-localization]], and that is the logarithmic cohomology operation. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} By the [[Bousfield-Kuhn construction]] there is an [[equivalence]] of spectra \begin{displaymath} L_{K(n)} gl_1(E) \simeq L_{K(n)}E \end{displaymath} between the [[K(n)-local spectrum]] induced by the [[abelian ∞-group|abelian]] [[∞-group of units]] of $E$ (regarded as a [[connective spectrum]]) with that induced by $E$ itself. The logarithm on $E$ is the [[composition|composite]] of that with the [[Bousfield localization of spectra|localization map]] \begin{displaymath} \ell_{n,p} \;\colon\; gl_1(E) \stackrel{}{\longrightarrow} L_{K(n)}gl_1(E) \stackrel{\simeq}{\to} L_{K(n)} E \,. \end{displaymath} (see \hyperlink{Rezk06}{Rezk 06, section 3}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ActionOnCohomologyGroups}{}\subsubsection*{{Action on cohomology groups}}\label{ActionOnCohomologyGroups} For every [[E-∞ ring]] $E$ and spaces $X$, [[prime number]] $p$ and [[natural number]] $n$, the logarith induces a homomorphism of [[cohomology groups]] of the form \begin{displaymath} \ell_{n,p} \;\colon\; (E^0(X))^\times \longrightarrow (L_{K(n)}E)^0(X) \,. \end{displaymath} \hypertarget{explicit_formula_in_terms_of_power_operations}{}\subsubsection*{{Explicit formula in terms of power operations}}\label{explicit_formula_in_terms_of_power_operations} Under some conditions there is an explicit formula of the logarithmic cohomology operation by a [[series]] of [[power operations]]. Let $E$ be a [[K(n)-local stable homotopy theory|K(1)-local]] [[E-∞ ring]] such that \begin{itemize}% \item the [[kernel]] of $\pi_0 L_{K(1)}\mathbb{S} \longrightarrow \pi_0 E$ contains the [[torsion subgroup]] of $\pi_0 L_{K(1)}\mathbb{S}$. \end{itemize} (This is for instance the case for $L_{K(1)}$[[tmf]]). Then on a [[finite CW complex]] $X$ the logarithmic cohomology operation from \hyperlink{ActionOnCohomologyGroups}{above} \begin{displaymath} \ell_{1,p}\;\colon\; (E^0(X))^\times \longrightarrow E^0(X) \end{displaymath} is given by the [[series]] \begin{displaymath} \begin{aligned} \ell_{1,p} \colon x & \mapsto \left( 1 - \frac{1}{p}\psi \right) log(x) \\ & = \frac{1}{p} log \frac{x^p}{\psi(x)} \\ & = \sum_{k=1}^\infty (-1)^k \frac{p^{k-1}}{k}\left( \frac{\theta(x)}{x^p}\right)^k \\ \end{aligned} \end{displaymath} which [[convergence of a sequence|converges]] [[p-adic numbers|p-adically]]. (\hyperlink{Rezk06}{Rezk 06, theorem 1.9}, see also \hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, prop. 4.5}) Here $\theta$ \ldots{}. In the special case that $x = 1 + \epsilon$ with $\epsilon^2 = 0$ then this reduces to \begin{displaymath} \ell_{1,p}(1+ \epsilon)= \epsilon - \frac{1}{p}\psi(\epsilon) \,. \end{displaymath} \hypertarget{relation_to_the_stringorientation_of_}{}\subsubsection*{{Relation to the string-orientation of $tmf$}}\label{relation_to_the_stringorientation_of_} The above expression in terms of power operations may be used to establish the [[string orientation of tmf]] (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10}). \ldots{} \hypertarget{References}{}\subsection*{{References}}\label{References} The logarithmic operation for $p$-complete [[K-theory]] was first described in \begin{itemize}% \item [[Tammo tom Dieck]], \emph{The Artin-Hasse logarithm for $\lambda$-rings}, Algebraic topology (Arcata, CA, 1986), 409--415, Lecture Notes in Math., 1370, Springer, Berlin, 1989. \end{itemize} The formulation in terms of the [[Bousfield-Kuhn functor]] and the expression in terms of [[power operations]] is due to \begin{itemize}% \item [[Charles Rezk]], \emph{The units of a ring spectrum and a logarithmic cohomology operation}, J. Amer. Math. Soc. 19 (2006), 969-1014 (\href{http://arxiv.org/abs/math/0407022}{arXiv:math/0407022}) \end{itemize} The application of this to the [[string orientation of tmf]] is due to \begin{itemize}% \item [[Matthew Ando]], [[Mike Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \end{itemize} [[!redirects logarithmic cohomology operations]] \end{document}