\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{logic} \begin{quote}% `Contrariwise,' continued Tweedledee, `if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic.' (Lewis Carroll, \emph{\href{http://sabian.org/looking_glass4.php}{Through the Looking Glass}}) \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{logic}{}\section*{{Logic}}\label{logic} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{MathematicalLogic}{Mathematical logic}\dotfill \pageref*{MathematicalLogic} \linebreak \noindent\hyperlink{classical_subfields}{Classical subfields}\dotfill \pageref*{classical_subfields} \linebreak \noindent\hyperlink{CategoricalLogic}{Categorical logic}\dotfill \pageref*{CategoricalLogic} \linebreak \noindent\hyperlink{entries_on_logic}{Entries on logic}\dotfill \pageref*{entries_on_logic} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{General}{General}\dotfill \pageref*{General} \linebreak \noindent\hyperlink{ReferencesCategoricalLogic}{On categorical logic}\dotfill \pageref*{ReferencesCategoricalLogic} \linebreak \noindent\hyperlink{logic_in_natural_languages}{Logic in natural languages}\dotfill \pageref*{logic_in_natural_languages} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Traditionally, as a discipline, \textbf{logic} is the study of correct methods of reasoning. Logicians have principally studied [[deduction]], the process of passing from premises to conclusion in such a way that the [[truth]] of the former necessitates the truth of the latter. In other words, deductive logic studies what it is for an argument to be \emph{valid}. A second branch of logic studies [[inductive reasoning|induction]], reasoning about how to assess the plausibility of general propositions from observations of their instances. This has often been done in terms of [[probability theory]], particularly [[Bayesian reasoning|Bayesian]]. Some [[philosophy|philosophers]], notably [[Charles Peirce]], considered there to be third variety of reasoning for logic to study, namely, [[abduction]]. This is a process whereby one reasons to the truth of an explanation from its ability to account for what is observed. It is therefore sometimes also known as \emph{inference to the best explanation}. At least some aspects of this can also be studied using Bayesian probability. Deductive logic is the best developed of the branches. For centuries, treatments of the [[syllogism]] were at the forefront of the discipline. In the nineteenth century, however, spurred largely by the needs of [[mathematics]], in particular the need to handle [[relations]] and [[quantifiers]], a new logic emerged, known today as [[predicate logic]]. As we said above, logic is traditionally concerned with \emph{correct} methods of reasoning, and philosophers (and others) have had much to say \emph{prescriptively} about logic. However, one can also study logic \emph{descriptively}, taking it to be the study of methods of reasoning, without attempting to determine whether these methods are correct. One may study [[constructive logic]], or a [[substructural logic]], without saying that it should be adopted. Also psychologists study how people actually reason rapidly in situations without full information, such as by the \href{http://fastandfrugal.com/}{fast and frugal} approach. A \textbf{logic} is a specific method of reasoning. There are several ways to \emph{formalise} a logic as a [[mathematics|mathematical]] object; see at \emph{\hyperlink{MathematicalLogic}{Mathematical Logic}} below. \hypertarget{MathematicalLogic}{}\subsection*{{Mathematical logic}}\label{MathematicalLogic} \emph{Mathematical logic} or \emph{symbolic logic} is the study of logic and [[foundations]] of mathematics as, or via, formal systems -- \emph{[[theories]]} -- such as [[first-order logic]] or [[type theory]]. \hypertarget{classical_subfields}{}\subsubsection*{{Classical subfields}}\label{classical_subfields} The classical subfields of mathematical logic are \begin{itemize}% \item [[set theory]] \item [[model theory]], \item [[recursion theory]] \item [[proof theory]] \end{itemize} \hypertarget{CategoricalLogic}{}\subsubsection*{{Categorical logic}}\label{CategoricalLogic} By a convergence and unification of concepts that has been named \emph{[[computational trinitarianism]]}, mathematical logic is equivalently incarnated in \begin{enumerate}% \item [[type theory]] \item [[category theory]] \item [[programming theory]] \end{enumerate} The logical theory that is specified by and specifies a given [[category]] $\mathcal{C}$ -- called its \emph{[[internal logic]]}, see there for more details and also see [[internal language]], [[syntactic category]]. -- is the one \begin{itemize}% \item whose [[types]] are the [[objects]] $A$ of $\mathcal{C}$; \item whose [[contexts]] are the [[slice categories]] $\mathcal{C}_{/A}$; \item whose [[propositions]] in context are the [[(-1)-truncated objects]] $\phi$ of $\mathcal{C}_{/A}$; \item whose [[proofs]] $A \vdash PhiIsTrue : \phi$ are the [[generalized elements]] of $\phi$. \end{itemize} Hence pure mathematical logic in the sense of the study of [[propositions]] is identified with [[(0,1)-category theory]]: where one concentrates only on [[(-1)-truncated objects]]. Genuine [[category theory]], which is about [[0-truncated objects]], is the home for logic and [[set theory]], or rather [[type theory]], the 0-truncated objects being the [[sets]]/[[types]]/[[hSet|h-sets]]. For instance, \begin{itemize}% \item [[limits]] and [[colimits]], [[exponentials]], and [[object classifiers]] belong to the [[type theory]]; \item while their (-1)-truncation, in this order: [[intersections]]/([[and]]), [[unions]]([[or]]), [[implications]], and [[subobject classifiers]], belong to the logic. \end{itemize} Generally, [[(∞,1)-category theory]], which is about untruncated objects, is the home for logic and types with a [[constructive mathematics|constructive]] notion of [[equality]], the [[identity types]] in [[homotopy type theory]]. See also at \emph{\href{model%20theory#CategoricalModelTheory}{categorical model theory}}. \hypertarget{entries_on_logic}{}\subsection*{{Entries on logic}}\label{entries_on_logic} \begin{itemize}% \item [[axiom of choice]] \item [[Boolean algebra]] \item [[algebraic models for modal logics|Boolean algebra with operators]] \item [[boolean domain]] \item [[boolean function]] \item [[boolean-valued function]] \item [[classical logic]] \item [[constructive mathematics]] \item [[context]] \item [[equality]] \item [[principle of equivalence]] \item [[excluded middle]] \item [[geometric logic]] \item [[Heyting algebra]] \item [[higher-order logic]] \item [[internal logic]] \item [[intuitionistic logic]] \item [[linear logic]] \item [[logicality and invariance]] \item [[minimal logic]] \item [[modal logic]] \item [[adjoint logic]] \begin{itemize}% \item [[algebraic models for modal logics]]\begin{itemize}% \item [[closure algebra]] \item [[monadic algebra]] \item [[temporal algebra]] \end{itemize} \item [[arrow logic]] \item [[epistemic logic]]\begin{itemize}% \item [[the logic K(m)]] \item [[the logic T(m)]] \item [[the logic S4(m)]] \item [[the logic S5(m)]] \end{itemize} \item [[frame (modal logic)]] \item [[geometric models for modal logics]] \item [[modal type theory]] \item [[temporal logic]] \end{itemize} \item [[negation]] \item [[Peirce's law]] \item [[predicate]] \item [[predicate logic]] \item [[predicative mathematics]] \item [[propositional logic]] \item [[relation]] \item [[truth value]] \item [[type]] \item [[type theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[mathematical logic]] \item [[logic symbols]] \item [[type theory]], \textbf{logic} \item [[2-type theory]], [[2-logic]] \item [[(∞,1)-type theory]], [[(∞,1)-logic]] \item [[objective and subjective logic]] \end{itemize} [[!include logic symbols -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{General}{}\subsubsection*{{General}}\label{General} For centuries, logic was [[Aristotle's logic]] of [[deduction]] by [[syllogism]]. In the 19th century the idea of [[objective logic]] as [[metaphysics]] was influential \begin{itemize}% \item [[Hegel]], \emph{Wissenschaft der Logik} ( \emph{[[Science of Logic]]} ) \end{itemize} This ``old logic'' was famously criticized \begin{itemize}% \item [[Bertrand Russell]], \emph{[[Logic as the Essence of Philosophy]]}, 1914 \end{itemize} as opposed to the ``new logic'' of [[Peano]] and [[Frege]], contemporary [[predicate logic]]. The first textbook on mathematical logic is \begin{itemize}% \item [[David Hilbert]], [[Wilhelm Ackermann]], \emph{Grundz\"u{}ge der Theoretischen Logik} , 4th ed. Springer Heidelberg 1959 1928 \end{itemize} Modern textbooks on mathematical logic include \begin{itemize}% \item [[Open Logic Project]], \emph{The open logic text} (\href{http://people.ucalgary.ca/~rzach/static/open-logic/open-logic-complete.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesCategoricalLogic}{}\subsubsection*{{On categorical logic}}\label{ReferencesCategoricalLogic} \begin{itemize}% \item [[William Lawvere]], \emph{[[Adjointness in Foundations]]}, Dialectica 23 (1969), 281-296 \item [[William Lawvere]] \emph{Equality in hyperdoctrines and comprehension schema as an adjoint functor}. In A. Heller, ed., \emph{Proc. New York Symp. on Applications of Categorical Algebra}, pp. 1--14. AMS, 1970. ([[LawvereComprehension.pdf:file]]) \item [[Pierre Cartier]], \emph{Logique, cat\'e{}gories et faisceaux}, S\'e{}minaire Bourbaki, 20 (1977-1978), Exp. No. 513, 24 p. (\href{http://www.numdam.org/item?id=SB_1977-1978__20__123_0}{numdam}) \item [[Lambek]], J.; [[Philip Scott|Scott]], P.J. (1986), \emph{Introduction to Higher Order Categorical Logic}, Cambridge University Press. \item [[Jim Lambek]], [[Phil Scott]], \emph{Reflections on the categorical foundations of mathematics} (\href{https://www.site.uottawa.ca/~phil/papers/LS11.final.pdf}{pdf}) \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \item [[Bart Jacobs]], \emph{Categorical Logic and Type Theory}, (1999) Elsevier \item [[John Bell]], \emph{The development of categorical logic} (\href{http://publish.uwo.ca/~jbell/catlogprime.pdf}{pdf}) \item [[Jean-Yves Girard]], \emph{[[Lectures on Logic]]}, European Mathematical Society 2011 \item [[Jean-Pierre Marquis]], [[Gonzalo Reyes]], (2009) \emph{The History of Categorical Logic 1963-1977 (\href{https://www.webdepot.umontreal.ca/Usagers/marquisj/MonDepotPublic/HistofCatLog.pdf}{pdf})} \end{itemize} [[!include REF MakkaiReyes77]] \hypertarget{logic_in_natural_languages}{}\subsubsection*{{Logic in natural languages}}\label{logic_in_natural_languages} \begin{itemize}% \item Pieter A. M. Seuren, \emph{The logic of language}, vol. II of Language from within; (vol. I: \emph{Language in cognition}) Oxford University Press 2010 \end{itemize} [[!redirects logic]] [[!redirects logics]] [[!redirects categorical logic]] [[!redirects categorial logic]] [[!redirects category-theoretic logic]] [[!redirects symbolic logic]] \end{document}