\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{logical functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{preserved_structures}{Preserved structures}\dotfill \pageref*{preserved_structures} \linebreak \noindent\hyperlink{relation_to_geometric_morphisms}{Relation to geometric morphisms}\dotfill \pageref*{relation_to_geometric_morphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{logical morphism} or \emph{logical functor} is a [[homomorphism]] between [[elementary topos]]es that preserves the structure of a topos as a context for [[logic]]: a functor which preserves all the elementary topos structure, including in particular [[power objects]], but not necessarily any infinitary structure (such as present additionally in a [[sheaf topos]]). If instead a topos is regarded as a context for [[geometry]] or specifically [[geometric logic]], then the notion of [[homomorphism]] preserving this is that of a \emph{[[geometric morphism]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Since all the elementary topos structure follows from having [[finite limits]] and [[power objects]], it suffices to define a logical functor to preserve these, up to [[isomorphism]]. It then follows that it is also a [[locally cartesian closed functor]], a [[Heyting functor]], etc. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{E}$ be an [[elementary topos]]. Write $\Omega \in \mathcal{E}$ for the [[subobject classifier]]. For each [[object]] $A \in \mathcal{E}$ write \begin{displaymath} P A := \Omega^A \end{displaymath} for the [[exponential object]]. Write \begin{displaymath} \in_A \hookrightarrow P A \times A \end{displaymath} for the [[subobject]] classified by the [[evaluation map]] $ev : P A \times A \to \Omega$. \end{defn} This exhibits $P A$ as a [[power object]] for $A$. \begin{defn} \label{}\hypertarget{}{} A [[functor]] $F : \mathcal{E} \to \mathcal{F}$ between [[elementary toposes]] is called a \textbf{logical morphism} if \begin{enumerate}% \item $F$ preserves finite [[limits]]; \item for every object $A \in \mathcal{E}$ \begin{itemize}% \item the canonical morphism \begin{displaymath} \phi_A : F(P A) \to P (F A) \end{displaymath} is an [[isomorphism]]; this is the [[name of the relation]] \begin{displaymath} F(\in_A) \hookrightarrow F(P A \times A) \simeq F(P A) \times F A \end{displaymath} (using that [[cartesian functor]]s preserve both [[product]]s as well as [[monomorphism]]) \item equivalently: $F(P A)$ equipped with the [[relation]] $F(\in_A)$ is a [[power object]] for $F(A)$ in $\mathcal{F}$. \end{itemize} \end{enumerate} \end{defn} The notion of logical functors between [[topos]]es is in contrast to [[geometric morphism]]s between toposes: the former preserve the structure of an [[elementary topos]], the latter those of a [[sheaf topos]]. But both can be combined: \begin{defn} \label{AtomicGeometricMorphism}\hypertarget{AtomicGeometricMorphism}{} A [[geometric morphism]] whose [[inverse image]] is a logical functor is called an [[atomic geometric morphism]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} The other case, that the [[direct image]] of a geometric morphism is a logical functor is not of interest. See cor. \ref{LogicalMorphismsAsDirectImages} below. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{LeftRightAdjoint}\hypertarget{LeftRightAdjoint}{} A logical functor has a [[left adjoint]] precisely if it has a [[right adjoint]]. \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, cor. A2.2.10}). \begin{proof} For $F : \mathcal{E} \to \mathcal{F}$ a logical functor, we have by definition a [[diagram]] \begin{displaymath} \itexarray{ \mathcal{E}^{op} &\stackrel{F^{op}}{\to}& \mathcal{F}^{op} \\ {}^{\mathllap{P}}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{P}} \\ \mathcal{E} &\stackrel{F}{\to}& \mathcal{F} } \end{displaymath} in [[Cat]]. This satisfies the assumptions of the [[adjoint lifting theorem]] and hence $F$ has a right adjoint precisely if $F^{op}$ does. But a right adjoint of $F^{op}$ is a left adjoint of $F$, and vice versa. \end{proof} \begin{prop} \label{PresMono}\hypertarget{PresMono}{} If a logical functor $F : \mathcal{E} \to \mathcal{F}$ has a left adjoint $L$, then $L$ preserves [[monomorphisms]], and indeed induces a bijection between subobjects of $A\in \mathcal{F}$ and subobjects of $L A\in \mathcal{E}$. \end{prop} \begin{proof} Since $F(\Omega_{\mathcal{E}}) = \Omega_{\mathcal{F}}$, we have a bijection \begin{displaymath} Sub_{\mathcal{F}}(A) \cong \mathcal{F}(A,\Omega_{\mathcal{F}}) \cong \mathcal{E}(L A,\Omega_{\mathcal{E}}) \cong Sub_{\mathcal{E}}(L A). \end{displaymath} It remains to check that this bijection is implemented by the action of $L$, which can be done with [[partial map classifiers]]; see (\hyperlink{Johnstone}{Johnstone, Lemma A2.4.8}). \end{proof} \begin{prop} \label{CharPullback}\hypertarget{CharPullback}{} For a logical functor $F : \mathcal{E} \to \mathcal{F}$ having a left adjoint $L$, the following are equivalent: \begin{enumerate}% \item The induced functor $L':\mathcal{F} \to \mathcal{E}/L 1$ is an [[equivalence of categories]], i.e. the adjunction $L\dashv F$ can be identified with the pullback adjunction $\mathcal{E}/B \rightleftarrows \mathcal{E}$ for some $B$ (namely $L1$). \item $L$ is [[conservative functor|conservative]]. \item $L$ is [[faithful functor|faithful]]. \item $L$ preserves [[equalizers]]. \item $L$ preserves [[pullbacks]]. \end{enumerate} \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, Prop. A2.3.8}). \begin{proof} The left adjoint of pullback has all the other properties. Any pullback-preserving functor preserves equalizers. An equalizer-preserving functor is faithful as soon as it reflects invertibility of monomorphisms, which follows from Proposition \ref{PresMono} above. A faithful functor reflects monos and epis, hence is conservative once its domain is [[balanced category|balanced]]. Finally, if $L$ is conservative then so is $L'$, and its right adjoint $F'$ (given by $F$ followed by pullback along $\eta : 1 \to F L 1$) is also logical, hence cartesian closed. Thus, $L'\dashv F'$ is a [[Hopf adjunction]] for the cartesian monoidal structures, and $L'$ preserves the terminal object. Now the counit of $L'\dashv F'$ can be factored as \begin{displaymath} L' F' A \cong L'(1\times F' A) \xrightarrow{\cong} L' 1 \times A \cong 1\times A\cong A \end{displaymath} so it is an isomorphism. By the triangle identity, $L'(\eta)$ is an isomorphism, but $L'$ is conservative, hence the unit $\eta$ is also an isomorphism, and $L'\dashv F'$ is an equivalence. \end{proof} This appears as (\hyperlink{Johnstone}{Johnstone, cor. A2.2.10}). \begin{cor} \label{LogicalMorphismsRightAdjointToCartesianFunctors}\hypertarget{LogicalMorphismsRightAdjointToCartesianFunctors}{} If a logical functor is [[right adjoint]] to a [[left exact functor]], then it is an [[equivalence of categories]]. \end{cor} This appears as (\hyperlink{Johnstone}{Johnstone, scholium 2.3.9}). \hypertarget{preserved_structures}{}\subsubsection*{{Preserved structures}}\label{preserved_structures} In particular, a logical functor preserves the truth of all sentences in the [[internal logic]]. If it is moreover [[conservative functor|conservative]], then it also \emph{reflects} the truth of such sentences. For example, the [[transfer principle]] of [[nonstandard analysis]] can be stated as the fact that a certain functor is logical and conservative. \hypertarget{relation_to_geometric_morphisms}{}\subsubsection*{{Relation to geometric morphisms}}\label{relation_to_geometric_morphisms} The difference between geometric and logical functors between toposes is, in a certain sense, a [[categorification]] of the difference between a [[homomorphism]] of [[frames]] and a homomorphism of [[Heyting algebras]]. When the latter are [[complete lattice|complete]], these are the same objects with the same [[isomorphisms]] but different morphisms. However, while frame homomorphisms naturally categorified by geometric functors, a more precise categorification of Heyting algebra homomorphisms would be [[Heyting functors]], which preserve the internal first-order logic, but not the higher-order logic as logical functors do. \begin{prop} \label{LogicalMorphismsAsDirectImages}\hypertarget{LogicalMorphismsAsDirectImages}{} A logical functor is the [[direct image]] of a [[geometric morphism]] precisely if it is an [[equivalence of categories|equivalence]]. \end{prop} \begin{proof} Since by definition the direct image of a geometric morphism has a [[left adjoint]] that preserves [[finite limits]]. \end{proof} But logical inverse images are of interest. Recall from def. \ref{AtomicGeometricMorphism} above that a [[geometric morphism]] with logical inverse image is called an [[atomic geometric morphism]]. \begin{cor} \label{}\hypertarget{}{} Every [[atomic geometric morphism]] is an [[essential geometric morphism]]. \end{cor} \begin{proof} By prop. \ref{LeftRightAdjoint}. \end{proof} The following is the main source of examples of atomic geometric morphisms. \begin{prop} \label{}\hypertarget{}{} The [[inverse image]] of any [[base change geometric morphism]], hence in particular of any [[etale geometric morphism]], is a [[logical morphism]]. \end{prop} \begin{proof} The inverse image is given by [[pullback]] along the given morphism. \end{proof} \begin{prop} \label{}\hypertarget{}{} When considering the [[internal logic]] of a given [[topos]] $\mathcal{E}$ relations, [[predicate]]s/[[proposition]]s about [[variable]]s of [[type]] $A \in ob \mathcal{E}$ are [[subobject]]s of $A$. Application of function symbols to such expressions corresponds to pullback along the morphism representing the function symbol. The above says that this is, indeed, a \emph{logical operation}. \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The inclusion [[FinSet]] $\hookrightarrow$ [[Set]] is logical. \item More generally, for any [[small category]] $C$ the inclusion \begin{displaymath} [C^{op}, FinSet] \hookrightarrow [C^{op}, Set] \end{displaymath} into the [[presheaf topos]] is logical. \item For $G$ a [[group]] and $\mathbf{B}G$ its [[delooping]] [[groupoid]], the [[forgetful functor]] \begin{displaymath} [\mathbf{B}G, Set] \to Set \end{displaymath} from [[permutation representation]]s to [[Set]] is logical. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section A2.1 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Section IV.2, page 170 of \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} [[!redirects logical functor]] [[!redirects logical functors]] [[!redirects logical morphism]] [[!redirects logical morphisms]] \end{document}