\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{long exact sequence in homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToHomotopyFiberSequences}{Relation to homotopy fiber sequences}\dotfill \pageref*{RelationToHomotopyFiberSequences} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $\mathcal{A}$ be an [[abelian category]] and write $Ch_\bullet(\mathcal{A})$ for its [[category of chain complexes]]. Under forming [[chain homology]] \begin{displaymath} H_0 : Ch_\bullet(\mathcal{A}) \to \mathcal{A} \end{displaymath} in some (any) fixed degree, a [[homotopy fiber sequence]] in $Ch_\bullet(\mathcal{A})$ is sent to a [[long exact sequence]] in $\mathcal{A}$. This is the \emph{homology long exact sequence}. Often this is considered specifically for the case that the fiber sequence in $Ch_\bullet(\mathcal{A})$ is that induced from a [[short exact sequence]] in $\mathcal{A}$. In this case the further map (that which makes the sequence ``long'') is called the [[connecting homomorphism]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} (\ldots{}) For the moment see still at \emph{[[fiber sequence]]}, for instance the section \emph{\href{fiber%20sequence#LongSequCoh}{long exact sequence in cohomology}} there. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToHomotopyFiberSequences}{}\subsubsection*{{Relation to homotopy fiber sequences}}\label{RelationToHomotopyFiberSequences} We discuss the relation of homology long exact sequences to [[homotopy cofiber sequences]] of chain complexes. Technical details corresponding to the following survey are at \emph{[[mapping cone]]} in the section \emph{\href{http://ncatlab.org/nlab/show/mapping+cone#HomologyExactSequencesAndFiberSequences}{Mapping cone -- Homology exact sequences and fiber sequences}}. $\,$ While the notion of a [[short exact sequence]] of [[chain complexes]] is very useful for computations, it does not have invariant meaning if one considers chain complexes as objects in (abelian) [[homotopy theory]], where one takes into account [[chain homotopies]] between [[chain maps]] and takes [[equivalence]] of chain complexes not to be given by [[isomorphism]], but by [[quasi-isomorphism]]. For if a [[chain map]] $A_\bullet \to B_\bullet$ is the degreewise [[kernel]] of a chain map $B_\bullet \to C_\bullet$, then if $\hat A_\bullet \stackrel{\simeq}{\to} A_\bullet$ is a [[quasi-isomorphism]] (for instance a [[projective resolution]] of $A_\bullet$) then of course the composite chain map $\hat A_\bullet \to B_\bullet$ is in general far from being the degreewise kernel of $C_\bullet$. Hence the notion of degreewise kernels of chain maps and hence that of short exact sequences is not meaningful in the homotopy theory of chain complexes in $\mathcal{A}$ (for instance: not in the [[derived category]] of $\mathcal{A}$). That short exact sequences of chain complexes nevertheless play an important role in [[homological algebra]] is due to what might be called a ``technical coincidence'': \begin{prop} \label{}\hypertarget{}{} If $A_\bullet \to B_\bullet \to C_\bullet$ is a [[short exact sequence]] of [[chain complexes]], then the [[commuting square]] \begin{displaymath} \itexarray{ A_\bullet &\to& 0 \\ \downarrow && \downarrow \\ B_\bullet &\to& C_\bullet } \end{displaymath} is not only a [[pullback]] square in $Ch_\bullet(\mathcal{A})$, exhibiting $A_\bullet$ as the [[fiber]] of $B_\bullet \to C_\bullet$ over $0 \in C_\bullet$, it is in fact also a \emph{[[homotopy pullback]]}. \end{prop} This means it is [[universal property|universal]] not just among commuting such squares, but also among such squares which commute possibly only up to a [[chain homotopy]] $\phi$: \begin{displaymath} \itexarray{ Q_\bullet &\to& 0 \\ \downarrow &\swArrow_{\phi}& \downarrow \\ B_\bullet &\to& C_\bullet } \end{displaymath} and with morphisms between such squares being maps $A_\bullet \to A'_\bullet$ correspondingly with further chain homotopies filling all diagrams in sight. \begin{proof} This follows from using the basic property (see at \href{exact+sequence#Definition}{exact sequence -- Definition}) that in a short exact sequence $A_\bullet \to B_\bullet \to C_\bullet$ the morphism on the right is a degreewise [[surjection]] together with a basic result in the theory of [[model categories]] or in fact that of [[categories of fibrant objects]] which is discussed in detail at \emph{[[homotopy pullback]]} and also at \emph{[[factorization lemma]]}: by the existence of the [[projective model structure on chain complexes]], we may regard every chain complex as a [[fibrant object]] and every degreewise surjection as a [[fibration]]. By the basic theorem discussed at \href{homotopy%20pullback#ConstructionsGeneral}{Homotopy pullback -- Properties -- General} these are sufficient conditions for the ordinary pullback as above to produce a chain complex that represents the homotopy-correct [[homotopy pullback]] (which, beware, is defined up ``weak chain homology equivalence'' only, hence up to [[zig-zags]] of [[quasi-isomorphism]]). \end{proof} Equivalently, we have the formally dual result, proved using instead the existence of the [[injective model structure on chain complexes]]: \begin{prop} \label{}\hypertarget{}{} If $A_\bullet \to B_\bullet \to C_\bullet$ is a [[short exact sequence]] of [[chain complexes]], then the [[commuting square]] \begin{displaymath} \itexarray{ A_\bullet &\to& 0 \\ \downarrow && \downarrow \\ B_\bullet &\to& C_\bullet } \end{displaymath} is not only a [[pushout]] square in $Ch_\bullet(\mathcal{A})$, exhibiting $C_\bullet$ as the [[cofiber]] of $A_\bullet \to B_\bullet$ over $0 \in C_\bullet$, it is in fact also a \emph{[[homotopy pushout]]}. \end{prop} But a central difference between [[fibers]]/[[cofibers]] on the one hand and [[homotopy fibers]]/[[homotopy cofibers]] on the other is that while the (co)fiber of a (co)fiber is necessarily trivial, the homotopy (co)fiber of a homotopy (co)fiber is in general far from trivial: it is instead the [[looping]] $\Omega(-)$ or [[suspension]] $\Sigma(-)$ of the codomain/domain of the original morphism: by the [[pasting law]] for homotopy pullbacks the [[pasting]] composite of successive [[homotopy cofibers]] of a given morphism $f : A_\bullet \to B_\bullet$ looks like this: \begin{displaymath} \itexarray{ A_\bullet &\stackrel{f}{\to}& B_\bullet &\to& 0 \\ \downarrow &\swArrow_{\mathrlap{\phi}}& \downarrow &\swArrow& \downarrow \\ 0 &\to& cone(f) &\to& A[1]_{\bullet} &\stackrel{}{\to}& 0 \\ && \downarrow &\swArrow& \downarrow^{\mathrlap{f[1]}} &\swArrow& \downarrow \\ && 0 &\to& B[1] &\to& cone(f)[1]_\bullet &\to& \cdots \\ && && \downarrow && \downarrow &\ddots& \\ && && \vdots && && } \end{displaymath} here \begin{itemize}% \item $cone(f)$ is a specific representative of the [[homotopy cofiber]] of $f$ called the \emph{[[mapping cone]]} of $f$, whose construction comes with an explicit [[chain homotopy]] $\phi$ as indicated, hence $cone(f)$ is homology-equivalence to $C_\bullet$ above, but is in general a ``bigger'' model of the homotopy cofiber; \item $A[1]$ etc. is the [[suspension of a chain complex]] of $A$, hence the same chain complex but pushed up in degree by one. \end{itemize} This is discussed in detail at \emph{[[mapping cone]]}, see the section \emph{\href{mapping%20cone#InChainComplexes}{mapping cone - for chain complexes}}. In conclusion we get from every morphim of chain complexes a long \textbf{[[homotopy cofiber sequence]]} \begin{displaymath} \cdots \to A_\bullet \stackrel{f}{\to}B_\bullet \stackrel{}{\to} cone(f) \stackrel{}{\to} A[1]_\bullet \stackrel{f[1]}{\to} B[1]_\bullet \stackrel{}{\to} cone(f)[1]_\bullet \to \cdots \,. \end{displaymath} And applying the [[chain homology]] functor to this yields the long exact sequence in chain homology which is traditionally said to be associated to the short exact sequence $A_\bullet \to B_\bullet \to C_\bullet$. In conclusion this means that it is not really the passage to homology groups which ``makes a short exact sequence become long''. It's rather that passing to homology groups is a shadow of passing to chain complexes regarded up to quasi-isomorphism, and \emph{this} is what makes every short exact sequence be realized as but a special presentation of a stage in a long [[homotopy fiber sequence]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Gysin sequence]] \item [[Serre long exact sequence]] \item [[long exact sequence of homotopy groups]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item Robert Ash, \emph{The long exact homology sequence and applications} (\href{http://www.math.uiuc.edu/~r-ash/Algebra/Supplement.pdf}{pdf}) \end{itemize} [[!redirects long exact sequence in cohomology]] [[!redirects long exact sequences in homology]] [[!redirects long exact sequences in cohomology]] [[!redirects homology exact sequence]] [[!redirects homology exact sequences]] [[!redirects cohomology exact sequence]] [[!redirects cohomology exact sequences]] [[!redirects homology long exact sequence]] [[!redirects homology long exact sequences]] [[!redirects cohomology long exact sequence]] [[!redirects cohomology long exact sequences]] \end{document}