\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{loop group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{lie_algebra}{Lie algebra}\dotfill \pageref*{lie_algebra} \linebreak \noindent\hyperlink{complexification}{Complexification}\dotfill \pageref*{complexification} \linebreak \noindent\hyperlink{central_extensions}{Central extensions}\dotfill \pageref*{central_extensions} \linebreak \noindent\hyperlink{Representations}{Representations}\dotfill \pageref*{Representations} \linebreak \noindent\hyperlink{positive_energy}{Positive energy}\dotfill \pageref*{positive_energy} \linebreak \noindent\hyperlink{ByGeometricQuantization}{By geometric quantization (looped orbit method)}\dotfill \pageref*{ByGeometricQuantization} \linebreak \noindent\hyperlink{RelationToEquivariantEllipticCohomology}{Relation to equivariant elliptic cohomology}\dotfill \pageref*{RelationToEquivariantEllipticCohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[loop space]] of a [[topological group]] $G$ inherits the structure of a [[group]] under pointwise group multiplication of [[loops]]. This is called a \emph{loop group} of $G$. (Notice that this is a group structure in addition to the [[infinity-group]]-structure of any [[loop space]] under \emph{composition} of loops.) If $G$ is a [[Lie group]], then there is a smooth version of the loop group consisting of [[smooth functions]] $S^1 \to G$. By the discussion at [[manifold structure of mapping spaces]] the collection of such smooth maps is itself an [[infinite-dimensional smooth manifold]] and so the smooth loop group of a Lie group is an [[infinite-dimensional Lie group]]. Among all [[infinite-dimensional Lie groups]], loop groups are a most well behaved class. In particular their [[representation theory]] is similar to that of [[compact Lie groups]]. Some of these nice properties are solely due to the [[circle]] $S^1$ being a [[compact manifold]]. For $X$ any other compact manifold there is similarly an infinite-dimensional Lie group $[X,G]$ of smooth functions $X \to G$ under pointwise multiplication in $G$. Such mapping groups appear in [[physics]] notably as groups of [[gauge transformations]] over a [[spacetime]]/[[worldvolume]] $X$. Accordingly, loop groups play a prominint role in 1- and 2-dimensional [[quantum field theory]], notably the [[WZW model]] describing the propagation of a [[string]] on $G$. The \emph{[[current algebras]]} ([[affine algebras]]) which arise as [[Lie algebras]] of ([[central extension|centrally extended]]) loop groups derive their name from this relation to physics. Accordingly, as for [[compact Lie groups]], the [[representation theory]] of loop groups is naturally understood in terms of their [[geometric quantization]] (by a loop variant of the [[orbit method]]). On the other hand, for $X$ of [[dimension]] greater that 1 there are very few known results about the properties of the mapping group $[X,G]$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{lie_algebra}{}\subsubsection*{{Lie algebra}}\label{lie_algebra} Let $G$ be a [[compact Lie group]]. Write $\mathfrak{g}$ for its [[Lie algebra]]. \begin{prop} \label{}\hypertarget{}{} The [[Lie algebra]] of $L G$ is the [[loop Lie algebra]] \begin{displaymath} Lie(L G) \simeq L Lie(G) = L \mathfrak{g} \,. \end{displaymath} \end{prop} \hypertarget{complexification}{}\subsubsection*{{Complexification}}\label{complexification} Let $G$ be a [[compact Lie group]]. \begin{prop} \label{}\hypertarget{}{} The [[complexification of a Lie group|complexification]] of $L G$ is the loop group of the complexification of $G$ \begin{displaymath} (L G)_{\mathbb{C}} \simeq L (G_\mathbb{C}) \,. \end{displaymath} \end{prop} \hypertarget{central_extensions}{}\subsubsection*{{Central extensions}}\label{central_extensions} Loop groups of [[compact space|compact]] [[Lie groups]] have canonical [[central extensions]], often called \emph{Kac-Moody central extensions} . A detailed discussion is in (\hyperlink{PressleySegal}{PressleySegal}). A review is in (\hyperlink{BCSS}{BCSS}) \hypertarget{Representations}{}\subsubsection*{{Representations}}\label{Representations} \hypertarget{positive_energy}{}\paragraph*{{Positive energy}}\label{positive_energy} Write \begin{displaymath} t_\theta \colon L G \to L G \end{displaymath} for the [[automorphism]] which rotates loops by an [[angle]] $\theta$. The corresponding [[semidirect product group]] we write $L G \rtimes S^1$ \begin{defn} \label{}\hypertarget{}{} Let $V$ be a [[topological vector space]]. A linear representation \begin{displaymath} S^1 \to Aut(V) \end{displaymath} of the [[circle group]] is called \textbf{positive} if $\exp(i \theta)$ acts by $\exp(i A \theta)$ where $A \in End(V)$ is a [[linear operator]] with positive [[spectrum of an operator|spectrum]]. A linear [[representation]] \begin{displaymath} \rho : L G \to Aut(V) \end{displaymath} is said to have \textbf{positive energy} or to be a \textbf{[[positive energy representation]]} if it extends to a representation of the [[semidirect product group]] $L G \rtimes S^1$ such that the restriction to $S^1$ is positive. \end{defn} \hypertarget{ByGeometricQuantization}{}\paragraph*{{By geometric quantization (looped orbit method)}}\label{ByGeometricQuantization} We discuss the [[quantization of loop groups]] in the sense of [[geometric quantization]] of their canonical [[prequantum bundle]]. Let $G$ be a [[compact Lie group]]. Let $T \hookrightarrow G$ be the inclusion of a [[maximal torus]]. There is a [[fiber sequence]] \begin{displaymath} \itexarray{ G/T &\to& L G / T \\ && \downarrow \\ && L G / G & \simeq \Omega G } \,. \end{displaymath} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[orbit method]]}, if $G$ is a [[semisimple Lie group]], then $G/T$ is isomorphic to the [[coadjoint orbit]] of an element $\langle \lambda , -\rangle \in \mathfrak{g}^*$ for which $T \simeq G_\lambda$ is the [[stabilizer subgroup]]. If moreover $G$ is [[simply connected topological space|simply connected]], then the [[weight lattice]] $\Gamma_{wt} \subset \mathfrak{t}^* \simeq \mathfrak{t}$ of the Lie group $G$ is [[isomorphism|isomorphic]] to the group of [[group characters]] \begin{displaymath} \Gamma_{wt} \stackrel{\simeq}{\to} Hom_{LieGrp}(G,U(1)) \,. \end{displaymath} \end{remark} \begin{prop} \label{RepsFromGeometricQuantization}\hypertarget{RepsFromGeometricQuantization}{} The [[irreducible representation|irreducible]] [[projective representation|projective]] [[positive energy representations]] of $L G$ correspond precisley to the possible [[geometric quantizations]] of $L G / T$ (as in the [[orbit method]]). More in detail: The degree-2 [[integral cohomology]] of $L G / T$ is \begin{displaymath} H^2(L G / T) \simeq \mathbb{Z} \oplus H^2(G / T, \mathbb{Z}) \simeq \mathbb{Z} \oplus \hat T \,. \end{displaymath} Writing $L_{n,\lambda}$ for the corresponding [[complex line bundle]] with level $n \in \mathbb{Z}$ and weight $\lambda \in \hat T$ we have that \begin{enumerate}% \item the space of [[holomorphic sections]] of $L_{n,\lambda}$ is either zero or is an irreducible positive energy representation; \item every such arises this way; \item and is non-zero precisely if $(n,\lambda)$ is positive in the sense that for each positive [[coroot]] $h_\alpha$ of $G$ \begin{displaymath} 0 \leq \lambda(h_\alpha) \leq n \langle h_\alpha, h_\alpha\rangle \,. \end{displaymath} \end{enumerate} \end{prop} This appears for instance as (\hyperlink{Segal}{Segal, prop. 4.2}). \hypertarget{RelationToEquivariantEllipticCohomology}{}\subsubsection*{{Relation to equivariant elliptic cohomology}}\label{RelationToEquivariantEllipticCohomology} Under mild conditions (but over the complex numbers) the representation ring of a loop group $L G$ is equivalent to the $G$-[[equivariant elliptic cohomology]] (see there for more) of the point (\hyperlink{Ando00}{Ando 00, theorem 10.10}). This is a higher analog of how $G$-[[equivariant K-theory]] of the point gives the [[representation ring]] of $G$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kac-Moody group]] \item [[Verlinde ring]] \item [[string group]] \item [[caloron correspondence]] \item [[equivariant elliptic cohomology]] \item [[Kac character formula]] \item [[Kac-Weyl character]] \item [[double loop group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The standard textbook on loop groups is \begin{itemize}% \item Andrew Pressley, [[Graeme Segal]], \emph{Loop groups} Oxford University Press (1988) \end{itemize} A review talk is \begin{itemize}% \item [[Graeme Segal]], \emph{Loop groups} (\href{http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BFb0084581/chapter08.pdf}{pdf}) \end{itemize} A review of some aspects with an eye towards loop groups as part of the [[crossed module]] of groups representing a [[string 2-group]] is in \begin{itemize}% \item [[John Baez]], [[Alissa Crans]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{From loop groups to 2-groups}, Homology Homotopy Appl. Volume 9, Number 2 (2007), 101-135. (\href{https://arxiv.org/abs/math/0504123}{arXiv:math/0504123}) \end{itemize} The relation between [[representations]] of loop groups and [[twisted K-theory]] over the group is the topic of \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Constantin Teleman]], \emph{[[Loop Groups and Twisted K-Theory]]} \end{itemize} The relation between representations of loop groups an [[equivariant elliptic cohomology]] of the point is discussed in \begin{itemize}% \item [[Matthew Ando]], \emph{Power operations in elliptic cohomology and representations of loop groups} Transactions of the American Mathematical Society 352, 2000, pp. 5619-5666. (\href{http://www.jstor.org/stable/221905}{JSTOR}, \href{http://www.math.uiuc.edu/~mando/papers/POECLG/poeclg.pdf}{pdf}) \end{itemize} Discussion with respect to [[flag varieties]] is in \begin{itemize}% \item [[Shrawan Kumar]], \emph{Kac-Moody Groups, their Flag Varieties and Representation Theory}, Birkh\"a{}user 2002 \end{itemize} [[!redirects loop group]] [[!redirects loop groups]] [[!redirects loop group representation]] [[!redirects loop group representations]] [[!redirects Kac-Moody central extension]] [[!redirects Kac-Moody central extensions]] [[!redirects Kac-Moody loop group]] [[!redirects Kac-Moody loop groups]] \end{document}