\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{loop order} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_qunantum_field_theory}{}\paragraph*{{Algebraic Qunantum Field Theory}}\label{algebraic_qunantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{RelationToPowersInPlancksConstant}{Relation to powers in Planck's constant}\dotfill \pageref*{RelationToPowersInPlancksConstant} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]] the [[scattering amplitudes]] in the [[S-matrix]] are expressed as [[formal power series]] in (the [[coupling constant]] and) in [[Planck's constant]] $\hbar$. This formal power series may be expressed as a formal sum of contributions labeled by [[Feynman diagrams]]. The \emph{loop order} refers to something like the ``number of loops'' of [[edges]] in the [[Feynman diagram]] that contibutes to a given [[scattering amplitude]]. It turns out that the loop order corresponds to the order in $\hbar$ that is contributed by this diagram (see \hyperlink{RelationToPowersInPlancksConstant}{below}). Therefore contributions of graphs at zero without loops (these are [[trees]], and hence these contributions are referred to as being at ``tree level'') correspond to the limit of [[classical field theory]] with $\hbar \to 0$. Indeed tree level Feynman diagrams yield [[perturbation theory|perturbative]] solutions of the [[classical field theory|classical]] [[equations of motion]] (see \hyperlink{Helling}{Helling}). Most predictions of the [[standard model of particle physics]] have very good agreement with [[experiment]] already to very low loop order, first or second; inclusion of third loop order is used (at least in [[QCD]]) to constrain theoretical uncertainties of the result (see \hyperlink{Cacciari05}{Cacciari 05, slide 5}, e.g. in [[Higgs field]] computation, see \hyperlink{ADDHM15}{ADDHM 15}). In rare cases higher loop orders are used (for instance in the computation of the [[anomalous magnetic moments]] \hyperlink{AHKN12}{AHKN 12}, but this is not a scattering experiment). This usefulness of low loop order is fortunate because \begin{enumerate}% \item the [[S-matrix]] [[formal power series]] for all [[theory (physics)|theories]] of interest has \emph{vanishing} [[radius of convergence]] (\href{perturbation+theory#Dyson52}{Dyson 52}), hence is at best an [[asymptotic series]] for which the [[sum]] of more than some low order terms is meaningless; \item the computational effort increases immensely with loop order. \end{enumerate} \hypertarget{RelationToPowersInPlancksConstant}{}\subsection*{{Relation to powers in Planck's constant}}\label{RelationToPowersInPlancksConstant} The following is taken from \emph{[[geometry of physics -- A first idea of quantum field theory]]}. See there for more background. \begin{prop} \label{FeynmanDiagramLoopOrder}\hypertarget{FeynmanDiagramLoopOrder}{} \textbf{([[loop order]] and [[tree level]] of [[Feynman perturbation series]])} The [[effective action]] (\href{A+first+idea+of+quantum+field+theory#InPerturbationTheoryActionEffective}{this def.}) contains no negative powers of [[Planck's constant]] $\hbar$, hence is indeed a [[formal power series]] also in $\hbar$: \begin{displaymath} S_{eff}(g,j) \;\in\; PolyObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ] \,. \end{displaymath} and in particular \begin{displaymath} \left\langle S_{eff}(g,j) \right\rangle \;\in\; \mathbb{C}[ [ \hbar, g, j] ] \,. \end{displaymath} Moreover, the contribution to the effective action in the [[classical limit]] $\hbar \to 0$ is precisely that of [[Feynman amplitudes]] of those [[finite multigraphs]] (\href{A+first+idea+of+quantum+field+theory#FeynmanPerturbationSeriesAwayFromCoincidingPoints}{this prop.}) which are [[trees]] (\href{A+first+idea+of+quantum+field+theory#GraphPlanar}{this def.}); thus called the \emph{[[tree level]]}-contribution: \begin{displaymath} S_{eff}(g,j)\vert_{\hbar = 0} \;=\; i \hbar \underset{\Gamma \in \mathcal{G}_{conn} \cap \mathcal{G}_{tree}}{\sum} \Gamma\left( (g S_{int} + j A)_{i = 1}^{\nu(\Gamma)} \right) \,. \end{displaymath} Finally, a [[finite multigraph]] $\Gamma$ (\href{A+first+idea+of+quantum+field+theory#Graphs}{this def.}) which is [[planar graph|planar]] and [[connected graph|connected]] contributes to the effective action precisely at order \begin{displaymath} \hbar^{L(\Gamma)} \,, \end{displaymath} where $L(\Gamma) \in \mathbb{N}$ is the number of \emph{[[faces]]} of $\Gamma$, here called the \emph{number of loops} of the diagram; here usually called the \emph{[[loop order]]} of $\Gamma$. (Beware the terminology clash with [[graph theory]], see the discussion of [[tadpoles]] \href{A+first+idea+of+quantum+field+theory#Tadpoles}{here}) \end{prop} \begin{proof} By \href{A+first+idea+of+quantum+field+theory#LagrangianFieldTheoryPerturbativeScattering}{this def.} the explicit $\hbar$-dependence of the [[S-matrix]] is \begin{displaymath} \mathcal{S} \left( S_{int} \right) \;=\; \underset{k \in \mathbb{N}}{\sum} \frac{1}{k!} \frac{1}{(i \hbar)^k} T( \underset{k \, \text{factors}}{\underbrace{S_{int}, \cdots, S_{int}}} ) \end{displaymath} and by \href{A+first+idea+of+quantum+field+theory#TimeOrderedProductAwayFromDiagonal}{this prop.} the further $\hbar$-dependence of the [[time-ordered product]] $T(\cdots)$ is \begin{displaymath} T(S_{int}, S_{int}) \;=\; prod \circ \exp\left( \hbar \left\langle \Delta_F, \frac{\delta}{\delta \mathbf{\Phi}} \otimes \frac{\delta}{\delta \mathbf{\Phi}} \right\rangle \right) ( S_{int} \otimes S_{int} ) \,, \end{displaymath} By the [[Feynman rules]] (\href{A+first+idea+of+quantum+field+theory#FeynmanPerturbationSeriesAwayFromCoincidingPoints}{this prop.}) this means that \begin{enumerate}% \item each [[vertex]] of a Feynman diagram contributes a power $\hbar^{-1}$ to its Feynman amplitude; \item each [[edge]] of a Feynman diagram contributes a power $\hbar^{+1}$ to its Feynman amplitude. \end{enumerate} If we write \begin{displaymath} E(\Gamma), V(\Gamma) \;\in\; \mathbb{N} \end{displaymath} for the total number of [[vertices]] and [[edges]], respectively, in $\Gamma$, this means that a Feynman amplitude corresponding to some $\Gamma \in \mathcal{G}$ contributes precisely at order \begin{equation} \hbar^{E(\Gamma) - V(\Gamma)} \,. \label{GeneralFeynmanDiagramhbarContribution}\end{equation} So far this holds for arbitrary $\Gamma$. If however $\Gamma$ is [[connected graph|connected]] and [[planar graph|planar]], then \emph{[[Euler's formula]]} asserts that \begin{equation} E(\Gamma) - V(\Gamma) \;=\; L(\Gamma) - 1 \,. \label{ConnectedPlanarGraphEulerCharacteristic}\end{equation} Hence $\hbar^{L(\Gamma)- 1}$ is the order of $\hbar$ at which $\Gamma$ contributes to the [[scattering matrix]] expressed as the [[Feynman perturbation series]]. But the [[effective action]], by definition (\href{A+first+idea+of+quantum+field+theory#eq:ExpansionEffectiveAction}{this equation}), has the same contributions of Feynman amplitudes, but multiplied by another power of $\hbar^1$, hence it contributes at order \begin{displaymath} \hbar^{E(\Gamma) - V(\Gamma) + 1} = \hbar^{L(\Gamma)} \,. \end{displaymath} This proves the second claim on [[loop order]]. The first claim, due to the extra factor of $\hbar$ in the definition of the effective action, is equivalent to saying that the Feynman amplitude of every [[connected graph|connected]] [[finite multigraph]] contributes powers in $\hbar$ of order $\geq -1$ and contributes at order $\hbar^{-1}$ precisely if the graph is a tree. Observe that a [[connected graph|connected]] [[finite multigraph]] $\Gamma$ with $\nu \in \mathbb{N}$ vertices (necessarily $\nu \geq 1$) has at least $\nu-1$ edges and precisely $\nu - 1$ edges if it is a tree. To see this, consecutively remove edges from $\Gamma$ as long as possible while retaining connectivity. When this process stops, the result must be a connected tree $\Gamma'$, hence a [[connected graph|connected]] [[planar graph]] with $L(\Gamma') = 0$. Therefore [[Euler's formula]] \eqref{ConnectedPlanarGraphEulerCharacteristic} implies that that $E(\Gamma') = V(\Gamma') -1$. This means that the connected multigraph $\Gamma$ in general has a Feynman amplitude of order \begin{displaymath} \hbar^{E(\Gamma) - V(\Gamma)} = \hbar^{ \overset{\geq 0}{\overbrace{E(\Gamma) - E(\Gamma')}} + \overset{= -1}{\overbrace{E(\Gamma') - V(\Gamma)}} } \end{displaymath} and precisely if it is a tree its Feynman amplitude is of order $\hbar^{-1}$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[radiative correction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} General discussion includes \begin{itemize}% \item Stanley J. Brodsky, Paul Hoyer, \emph{The $\hbar$-Expansion in Quantum Field Theory}, Phys.Rev.D83:045026, 2011 (\href{https://arxiv.org/abs/1009.2313}{arXiv:1009.2313}) \end{itemize} Discussion of tree level Feynman diagrams as perturbative solutions in [[classical field theory]] is in \begin{itemize}% \item Robert Helling, \emph{Solving classical field equations} (\href{http://homepages.physik.uni-muenchen.de/~helling/classical_fields.pdf}{pdf}) \end{itemize} Discussion of loop orders of relevance in comparison to [[experiment]] cited above includes for instance the following \begin{itemize}% \item Matteo Cacciari, \emph{(Theoretical) review of heavy quark production}, BNL 14/12/2005 (\href{https://www.phenix.bnl.gov/WWW/publish/xiewei/RBRC_Workshop_Dec/heavyworkshop/cacciari.pdf}{pdf}) \item Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, Makiko Nio, \emph{Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant}, 10.1103/PhysRevLett.109.111807 (\hyperlink{https://arxiv.org/abs/1205.5368}{arXiv:1205.5368}) \item Charalampos Anastasiou, Claude Duhr, Falko Dulat, Franz Herzog, Bernhard Mistlberger, \emph{Higgs boson gluon-fusion production in N3LO QCD}, Phys. Rev. Lett. 114, 212001 (2015) (\href{https://arxiv.org/abs/1503.06056}{arXiv:1503.06056}) \end{itemize} [[!redirects loop orders]] [[!redirects tree level]] [[!redirects tree levels]] [[!redirects tree-level]] [[!redirects tree-levels]] [[!redirects 1-loop]] [[!redirects 2-loop]] [[!redirects 3-loop]] [[!redirects 4-loop]] \end{document}