\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{loop space object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{stabe_homotopy_theory}{}\paragraph*{{Stabe homotopy theory}}\label{stabe_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{loop_space_objects}{}\section*{{Loop space objects}}\label{loop_space_objects} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{explicit_constructions}{Explicit constructions}\dotfill \pageref*{explicit_constructions} \linebreak \noindent\hyperlink{free_loop_space_objects}{Free loop space objects}\dotfill \pageref*{free_loop_space_objects} \linebreak \noindent\hyperlink{based_loop_space_objects}{Based loop space objects}\dotfill \pageref*{based_loop_space_objects} \linebreak \noindent\hyperlink{remarks_2}{Remarks}\dotfill \pageref*{remarks_2} \linebreak \noindent\hyperlink{remarks_3}{Remarks}\dotfill \pageref*{remarks_3} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the [[(∞,1)-topos]] [[Top]] the construction of a [[loop space]] of a given [[topological space]] is familiar. This construction may be generalized to any other [[(∞,1)-topos]] and in fact to any other [[(∞,1)-category]] with [[homotopy pullbacks]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Loop space objects are defined in any [[(∞,1)-category]] $\mathbf{C}$ with [[homotopy pullbacks]]: for $X$ any [[pointed object]] of $\mathbf{C}$ with point ${*} \to X$, its [[loop space object]] is [[generalized the|the]] [[homotopy pullback]] $\Omega X$ of this point along itself: \begin{displaymath} \itexarray{ \Omega X &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& X } \,. \end{displaymath} A ([[generalised element|generalised]]) [[global point|element]] of $\Omega X$ may be thought of as a [[loop]] in $X$ at the [[base point]] $*$. \hypertarget{remarks}{}\subsubsection*{{Remarks}}\label{remarks} Since $\mathbf{C}(X,-)$ commutes with homotopy limits, one has a natural homotopy equivalence $\Omega\mathbf{C}(X,Y)\simeq \mathbf{C}(X,\Omega Y)$, for any two objects $X$ and $Y$ in $\mathbf{C}$. See also \begin{itemize}% \item [[fibration sequence]] \item [[delooping]] \item [[stable (∞,1)-category]] \end{itemize} \hypertarget{explicit_constructions}{}\subsection*{{Explicit constructions}}\label{explicit_constructions} Usually the [[(∞,1)-category]] in question is [[presentable (infinity,1)-category|presented]] by concrete 1-categorical data, such as that of a [[model category]]. In that case the above [[homotopy pullback]] has various realizations as an ordinary [[pullback]]. Notably it may be expressed using [[path objects]] which may come from [[interval objects]]. Even if the context is not (or not manifestly) that of a [[homotopical category]], an [[interval object]] may still exist and may be used as indicated in the following to construct loop space objects. \hypertarget{free_loop_space_objects}{}\subsubsection*{{Free loop space objects}}\label{free_loop_space_objects} In a category with [[interval object]] the \textbf{free loop space object} is the part of the [[path object]] $B^I = [I,B]$ which consists of closed paths, namely the [[pullback]] \begin{displaymath} \itexarray{ \Lambda B &\to& [I,B] \\ \downarrow && \downarrow^{\mathrlap{d_0 \times d_1}} \\ B &\stackrel{Id \times Id}{\to}& B \times B } \,. \end{displaymath} This is the same as the image of the [[co-span co-trace]] $cotr(I)$ of the interval object (which is the interval object closed to a loop!, see the examples at [[co-span co-trace]]) in $B$: \begin{displaymath} \left[ \itexarray{ && cotr(I) \\ & \nearrow && \nwarrow \\ pt &&&& I \\ & {}_{Id \sqcup Id}\nwarrow && \nearrow_{in \sqcup out} \\ && pt \sqcup pt } \;\;\;\;,\;\;\;\; B \right] \;,\;\;\;\; \simeq \;,\;\;\;\; \itexarray{ && \Lambda B \\ & \swarrow && \searrow \\ B &&&& [I,B] \\ & {}_{Id \times Id}\searrow && \swarrow_{d_0 \times d_1} \\ && B \times B } \end{displaymath} \hypertarget{based_loop_space_objects}{}\subsubsection*{{Based loop space objects}}\label{based_loop_space_objects} If $B$ is a [[pointed object]] with point $pt \stackrel{pt_B}{\to} B$ then the \textbf{based loop space object} of $B$ is the pullback $\Omega_{pt} B$ in \begin{displaymath} \itexarray{ \Omega_{pt}B &\to& [I,B] \\ \downarrow && \downarrow^{d_0 \times d_1} \\ pt &\stackrel{pt_B \times pt_B}{\to}& B \times B } \,. \end{displaymath} \hypertarget{remarks_2}{}\paragraph*{{Remarks}}\label{remarks_2} \begin{itemize}% \item $\Omega_{pt}B$ is the fiber of the [[generalized universal bundle]] $\mathbf{E}_{pt}B \to B$. \item the based loop space object $\Omega_{pt} B$ is the pullback of the free loop space object $\Lambda B$ to the point \begin{displaymath} \itexarray{ \Omega_{pt} B &\to& \Lambda B \\ \downarrow && \downarrow \\ pt &\stackrel{pt_B}{\to}& B } \,. \end{displaymath} \end{itemize} \hypertarget{remarks_3}{}\subsection*{{Remarks}}\label{remarks_3} \begin{itemize}% \item The loop space object $B$ can be regarded as the homotopy trace on the identity span on $B$, as described at [[span trace]]. \item The free loop space object inherits the structure of an $A_\infty$-[[A-infinity-category|category]] from that of the [[path object]] $[I,B]$. \item In a [[generalized smooth space|suitable extension]] of $\operatorname{Diff}$, this construction does \textbf{not} give the usual \emph{smooth} loop space (free or based). It gives the space of paths with coincident endpoints rather than the space of smooth maps from the circle. Thus the [[smooth loop space]] is not a loop space object. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Let $C =$ [[Top]] with the standard [[interval object]]. Then for $B= X$ a topological space $\Lambda B = \Lambda X$ is the ordinary free [[loop space]] of $X$. The generalization of this to \emph{smooth} spaces is discussed at [[smooth loop space]]. \item Let $C =$ [[Grpd]] with the standard interval object $I = \{a \stackrel{\simeq}{\to} b\}$ and let $\mathbf{B}G$ be the one-object groupoid corresponding to a group $G$, then \begin{displaymath} \Lambda \mathbf{B}G = G//_{Ad}G \end{displaymath} is the [[action groupoid]] of $G$ acting on itself by its adjoint action. Notice the example at [[co-span co-trace]] which says that the cotrace on $I$ is $cotr(I) = \mathbf{B}\mathbb{Z}$, and indeed \begin{displaymath} \Lambda \mathbf{B}G = [\mathbf{B}\mathbb{Z}, \mathbf{B}G] \,. \end{displaymath} The role of this $\Lambda \mathbf{B}G$ as a loop object is amplified in particular in \begin{itemize}% \item Simon Willerton, \emph{The twisted Drinfeld double of a finite group via gerbes and finite groupoids} (\href{http://arxiv.org/abs/math.QA/0503266}{arXiv}) \item Bruce Bartlett, \emph{On unitary 2-representations of finite groups and topological quantum field theory} (\href{http://arxiv.org/abs/0901.3975}{arXiv}) \end{itemize} \item On the other hand, the \emph{based} loop object of $\mathbf{B}G$ is just $G$: \begin{displaymath} \Omega \mathbf{B}G = G \,. \end{displaymath} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{loop space object}, [[free loop space object]], \begin{itemize}% \item [[delooping]], [[looping and delooping]] \item [[loop space]], [[free loop space]], [[derived loop space]] \end{itemize} \item [[suspension object]] \begin{itemize}% \item [[suspension]], [[reduced suspension]] \end{itemize} \end{itemize} [[!redirects loop space object]] [[!redirects loop space objects]] [[!redirects loop object]] [[!redirects loop objects]] [[!redirects loop space functor]] [[!redirects loop space functors]] \end{document}