\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{looping} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{ForPlainGroupsDeloopingToGroupoids}{For plain groups delooping to groupoids}\dotfill \pageref*{ForPlainGroupsDeloopingToGroupoids} \linebreak \noindent\hyperlink{for_topological_spaces_and_groupoids}{For topological spaces and $\infty$-groupoids}\dotfill \pageref*{for_topological_spaces_and_groupoids} \linebreak \noindent\hyperlink{for_parameterized_groupoids_stacks__sheaves}{For parameterized $\infty$-groupoids ($\infty$-stacks / $(\infty,1)$-sheaves)}\dotfill \pageref*{for_parameterized_groupoids_stacks__sheaves} \linebreak \noindent\hyperlink{for_cohesive_groupoids}{For cohesive $\infty$-groupoids}\dotfill \pageref*{for_cohesive_groupoids} \linebreak \noindent\hyperlink{for_categories}{For $(\infty,n)$-categories}\dotfill \pageref*{for_categories} \linebreak \noindent\hyperlink{relation_to_looping_and_suspension}{Relation to looping and suspension}\dotfill \pageref*{relation_to_looping_and_suspension} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X$ any kind of [[space]] (or possibly a [[directed space]], viewed as some sort of [[category]] or higher dimensional analogue of one), its [[loop space object]]s $\Omega_x X$ canonically inherit a [[monoidal category|monoidal structure]], coming from concatenation of [[loops]]. If $x \in X$ is essentially unique, then $\Omega_x X$ equipped with this monoidal structure remembers all of the structure of $X$: we say $X \simeq B \Omega_x X$ call $B A$ the \emph{[[delooping]]} of the monoidal object $A$. What all these terms (``loops'' $\Omega$, ``delooping'' $B$ etc.) mean in detail and how they are \emph{presented} concretely depends on the given setup. We discuss some of these below in the section \hyperlink{Examples}{Examples}. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{ForPlainGroupsDeloopingToGroupoids}{}\subsubsection*{{For plain groups delooping to groupoids}}\label{ForPlainGroupsDeloopingToGroupoids} Write \begin{itemize}% \item [[Grpd]] for the [[(2,1)-category]] of [[groupoids]] ([[objects]] are [[groupoids]], [[1-morphisms]] are [[functors]] between these and [[2-morphisms]] are [[natural transformations]] between those, which are necessarily [[natural isomorphisms]]), \item [[Grp]] for the [[1-category]] of [[groups]] ([[discrete groups]]), also regarded as a [[(2,1)-category]]; \item $Grpd^{\ast/}$ for the $(2,1)$-category of [[pointed objects]] in [[Grpd]], \item $Grpd_{\geq 1} \hookrightarrow Grpd$ for the [[full sub-(infinity,1)-category|full sub-(2,1)-category]] of [[connected object in an (infinity,1)-topos|connected]] groupoids, those for which $\pi_0 \simeq \ast$; \item $Grp^{\ast/}_{\geq 1}$ for the [[pointed objects]] in connected groupoids. \item $\pi_1(X,x) \in Grp$ for the [[fundamental group]] of a pointed groupoid $(\ast \stackrel{x}{\to} X) \in Grpd^{\ast/}$ at the given basepoint. \item $\mathbf{B}G \in Grpd$, given a group $G$, for the groupoid $(G\stackrel{\longrightarrow}{\longrightarrow} \ast)$, with composition given by the product in the group. There are two possible choices of conventions, we agree that \begin{displaymath} \itexarray{ && \ast \\ & {}^{\mathllap{g_1}}\nearrow && \searrow^{\mathrlap{g_2}} \\ \ast && \underset{g_1 \cdot g_2}{\longrightarrow} && \ast } \,. \end{displaymath} \end{itemize} \begin{prop} \label{SkeletalRepresentativesForConnectedGroupoids}\hypertarget{SkeletalRepresentativesForConnectedGroupoids}{} The [[(2,1)-category]] $Grp_{\geq 1}$ of connected groupoids is equivalent to its [[full sub-(infinity,1)-category|full sub-(2,1)-category]] on those objects of the form $\mathbf{B}G$, for $G$ a group. \end{prop} \begin{proof} Given a connected groupoid $X$, pick any basepoint $x\in X$ and consider the canonical inclusion $\mathbf{B}\pi_1(X,x) \longrightarrow X$. By construction this is [[fully faithful functor|fully faithful]] and by assumption of connectedness it is [[essentially surjective functor|essentially surjective]], hence it is an [[equivalence of groupoids]]. \end{proof} \begin{prop} \label{HomsBetweenBGs}\hypertarget{HomsBetweenBGs}{} The [[hom-groupoids]] between connected groupoids with fundamental groups $G$ and $H$, respectively, are equivalent to the [[action groupoids]] of the set of group [[homomorphisms]] $G \to H$ [[action|acted]] on by [[conjugation]] with elements of $H$: \begin{displaymath} Grpd(\mathbf{B}G, \mathbf{B}H) \simeq Grp(G,H)//_{ad}H \end{displaymath} Given two group homomorphisms $\phi_1, \phi_2 \colon G \longrightarrow H$ then an [[isomorphism]] between them in this hom-groupoid is an element $h \in H$ such that \begin{displaymath} \phi_2 = Ad_h \circ \phi_1 \coloneqq h^{-1}\cdot \phi_1(-) \cdot h \,. \end{displaymath} \end{prop} \begin{proof} By direct inspection of the naturality square for the [[natural transformations]] which are the morphisms in $Grpd(\mathbf{B}G, \mathbf{B}H)$: \begin{displaymath} \itexarray{ \ast && && \ast &\stackrel{h}{\longrightarrow}& \ast \\ \downarrow^{\mathrlap{g_1}} && && \downarrow^{\mathrlap{\phi_1(g_1)}} && \downarrow^{\mathrlap{\phi_2(g_1)}} \\ \ast && && \ast &\stackrel{h}{\longrightarrow}& \ast \\ \downarrow^{\mathrlap{g_2}} && && \downarrow^{\mathrlap{\phi_1(g_2)}} && \downarrow^{\mathrlap{\phi_2(g_2)}} \\ \ast && && \ast &\stackrel{h}{\longrightarrow}& \ast } \,. \end{displaymath} \end{proof} \begin{remark} \label{piAs2Functor}\hypertarget{piAs2Functor}{} The operation of forming $\pi_1$ is equivalently the operation of forming the [[homotopy fiber product]] of the point inclusion with itself, and hence extends to a [[(2,1)-functor]] \begin{displaymath} \pi_1 \colon Grpd^{\ast/} \longrightarrow Grp \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} Restricted to [[connected object in an (infinity,1)-topos|connected groupoids]] among the pointed groupoids, the functor $\pi_1 \colon Grpd^{\ast/}_{\geq 1} \longrightarrow Grp$ of remark \ref{piAs2Functor} is an [[equivalence of (2,1)-categories]]. \end{prop} \begin{proof} It is clear that the functor is essentially surjective: for $G$ any [[group]] then $\pi_1(\mathbf{B}G,\ast) \simeq G$. The more interesting point to notice is that $\pi_1$ is indeed a fully faithful [[(2,1)-functor]], in that for any $(X,x), (Y,y) \in Grpd^{\ast/}_{\geq 1}$ then the functor \begin{displaymath} (\pi_1)_{X,Y} \colon Grpd^{\ast/}((X,y),(Y,y)) \longrightarrow Grp(\pi_1(X,x), \pi_1(Y,y)) \end{displaymath} is an [[equivalence of groupoids|equivalence]] of [[hom-groupoids]]. By prop. \ref{SkeletalRepresentativesForConnectedGroupoids} it is sufficient to check this for $X = \mathbf{B}G$ and $Y = \mathbf{B}H$ with their canonical basepoints, hence to check that for any two groups $G,H$ the functor \begin{displaymath} (\pi_1)_{X,Y} \;\colon\; Grpd^{\ast/}((\mathbf{B}G,\ast),(\mathbf{B}H,\ast)) \longrightarrow Grp(G,H) \end{displaymath} is an equivalence. To see this, observe that, by definition of [[pointed objects]] via the [[undercategory]] under the point, a morphism in $Grpd^{\ast/}$ between groupoids of this form $\mathbf{B}(-)$ is a diagram in $Grp$ (unpointed) of the form \begin{displaymath} \itexarray{ && \ast \\ & \swarrow &\swArrow_{h}& \searrow \\ \mathbf{B}G && \underset{\mathbf{B}\phi}{\longrightarrow} && \mathbf{B}H } \end{displaymath} where the [[natural isomorphism]] is equivalently just the choice of an element $h \in H$. Hence these morphisms are pairs $(\phi,h)$ of a group homomorphism and an element of the domain. We claim that the [[(2,1)-functor]] $\pi_1$ takes such $(\phi,h)$ to the homomorphism $Ad_{h^{-1}} \circ \phi \;\colon\; G \longrightarrow H$. To see this, consider via remark \ref{piAs2Functor} this functor as forming loops: \begin{displaymath} \pi_1(\mathbf{B}G,\ast) = \left\{ \itexarray{ && \ast \\ & \swarrow && \searrow \\ \ast && \swArrow_{\mathrlap{g}} && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}G } \right\}_{g\in G} \,. \end{displaymath} This shows that on a morphism as above this acts by forming the [[pasting]] \begin{displaymath} \itexarray{ && \ast \\ & \swarrow && \searrow \\ \ast && \swArrow_{\mathrlap{g}} && \ast \\ & \searrow && \swarrow &\swArrow_{\mathrlap{h}}& \searrow \\ && \mathbf{B}G && \underset{\phi}{\longrightarrow} && \mathbf{B}H } \;\;\;\; = \:\;\;\; \itexarray{ && && \ast \\ && & \swarrow && \searrow \\ && \ast && \swArrow_{\mathrlap{h\phi(g)h^{-1}}} && \ast \\ & \swarrow & \swArrow_{\mathrlap{h}} & \searrow && \swarrow \\ \mathbf{B}G && \underset{\phi}{\longrightarrow} && \mathbf{B}H } \,. \end{displaymath} Unwinding the [[whiskering]] of [[natural transformations]] here, the claim follows, as indicated by the label of the upper 2-morphisms on the right. One observes now that these extra labels $h$ are precisely the information that ``trivializes'' the conjugation action which in prop. \ref{HomsBetweenBGs} prevents the bare set of group homomorphism: a [[2-morphism]] $(\phi_1, h_1) \Rightarrow (\phi_2,h_2)$ in $Grp^{\ast/}$ is a natural isomorphism of groupoids \begin{displaymath} \itexarray{ \mathbf{B}G &\stackrel{\phi_1}{\longrightarrow}& \mathbf{B}H \\ {}^{\mathllap{id}}\downarrow &\Downarrow^{\mathrlap{h}}& \downarrow^{\mathrlap{id}} \\ \mathbf{B}G &\underset{\phi_2}{\longrightarrow}& \mathbf{B}H } \end{displaymath} (encoding a conjugation relation $\phi_2 = Ad_{h} \circ \phi_1$ as above) such that we have the [[pasting]] relation \begin{displaymath} \itexarray{ && \ast \\ & \swarrow &\swArrow_{h_1}& \searrow \\ \mathbf{B}G && \stackrel{\phi_1}{\longrightarrow} && \mathbf{B}H \\ {}^{\mathllap{id}}\downarrow && \Downarrow^{\mathrlap{h}} && \downarrow^{\mathrlap{id}} \\ \mathbf{B}G &&\underset{\phi_2}{\longrightarrow} && \mathbf{B}H } \;\;\;\;\; = \;\;\;\;\; \itexarray{ && \ast \\ & \swarrow &\swArrow_{h_2}& \searrow \\ \mathbf{B}G && \underset{\phi_2}{\longrightarrow} && \mathbf{B}H } \,. \end{displaymath} But this says in components that $h_2 = h_1\cdot h$. Hence there is a \emph{at most one} morphism in $Grpd^{\ast/}((\mathbf{B}G,\ast),(\mathbf{B}H,\ast))$ from $(\phi_1,h_1)$ to $(\phi_2,h_2)$: it exists if $\phi_2 = Ad_h \circ \phi_1$ and $h_2 = h_1\cdot h$. But since, by the previous argument, the functor $\pi_1$ takes $(\phi_1,h_1)$ to $Ad_{h_1^{-1}} \circ \phi_1$, this means that such a morphism exists precisely if both $(\phi_1,h_1)$ and $(\phi_2,h_2)$ are taken to the same group homomorphism by $\pi_1$ \begin{displaymath} Ad_{h_2^{-1}} \circ \phi_2 = Ad_{h^{-1}\cdot h_1^{-1}}\circ \phi_2 = Ad_{h_1^{-1}} \circ \phi_1 \,. \end{displaymath} This establishes that $\pi_1$ is alspo an equivalence on all [[hom-groupoids]]. \end{proof} This proof also shows that $\mathbf{B}(-)$ is in fact the inverse equivalence: \begin{cor} \label{}\hypertarget{}{} There is an [[equivalence of (2,1)-categories]] between pointed connected groupoids and plain groups \begin{displaymath} Grp \stackrel{\underoverset{\simeq}{\pi_1 = \Omega_\ast}{\longleftarrow}}{\underset{\mathbf{B}}{\longrightarrow}} Grpd^{\ast/}_{\geq 1} \end{displaymath} given by forming [[loop space objects]] and by forming deloopings. \end{cor} \hypertarget{for_topological_spaces_and_groupoids}{}\subsubsection*{{For topological spaces and $\infty$-groupoids}}\label{for_topological_spaces_and_groupoids} There is an [[equivalence of (∞,1)-categories]] \begin{displaymath} \infty Grpd^{\ast/}_{\geq 1} \stackrel{\overset{B}{\leftarrow}}{\underset{\Omega}{\to}} \infty Group \end{displaymath} between [[pointed object|pointed]] [[connected]] [[∞-groupoid]]s and [[∞-group]]s, where $\Omega$ forms [[loop space object]]s. This is [[presentable (∞,1)-category|presented]] by a [[Quillen equivalence]] of [[model categories]] \begin{displaymath} sSet_* \stackrel{\overset{\bar W}{\leftarrow}}{\underset{G}{\to}} sGrp \end{displaymath} between the [[model structure on reduced simplicial sets]] and the [[transferred model structure]] on [[simplicial group]]s along the [[forgetful functor]] to the [[model structure on simplicial sets]]. (See [[groupoid object in an (infinity,1)-category]] for more details on this Quillen equivalence.) \hypertarget{for_parameterized_groupoids_stacks__sheaves}{}\subsubsection*{{For parameterized $\infty$-groupoids ($\infty$-stacks / $(\infty,1)$-sheaves)}}\label{for_parameterized_groupoids_stacks__sheaves} The following result makes precise for \emph{parameterized [[∞-groupoid]]s} -- for [[∞-stack]]s -- the general statement that $k$-fold [[delooping]] provides a correspondence between [[n-category|n-categories]] that have trivial [[k-morphism|r-morphism]]s for $r \lt k$ and [[k-tuply monoidal n-category|k-tuply monoidal n-categories]]. \begin{defn} \label{}\hypertarget{}{} An [[Ek-algebra]] object $A$ in an [[(∞,1)-topos]] $\mathbf{H}$ is called \textbf{groupal} if its [[homotopy groups in an (∞,1)-topos|connected components]] $\pi_0(A) \in \mathbf{H}_{\leq 0}$ is a [[group object]]. Write $Mon^{gp}_{\mathbb{E}[k]}(\mathbf{H})$ for the [[(∞,1)-category]] of groupal $E_k$-algebra objects in $\mathbf{H}$. A groupal $E_1$-algebra -- hence an groupal [[A-∞ algebra]] object in $\mathbf{H}$ -- we call an \emph{[[∞-group]]} in $\mathbf{H}$. Write $\infty Grp(\mathbf{H})$ for the [[(∞,1)-category]] of [[∞-group]]s in $\mathbf{H}$. \end{defn} \begin{theorem} \label{LoopingDeloopingForHigherStacks}\hypertarget{LoopingDeloopingForHigherStacks}{} Let $k \gt 0$, let $\mathbf{H}$ be an [[(∞,1)-category of (∞,1)-sheaves]] and let $\mathbf{H}_*^{\geq k}$ denote the [[full subcategory]] of the category $\mathbf{H}_{*}$ of [[pointed objects]], spanned by those pointed objects thar are $k-1$-[[connected]] (i.e. their first $k$ [[homotopy groups in an (∞,1)-topos|homotopy sheaves]]) vanish. Then there is a canonical equivalence of [[(∞,1)-category|(∞,1)-categories]] \begin{displaymath} \mathbf{H}^{\ast/}_{\geq k} \simeq Mon^{gp}_{\mathbb{E}[k]}(\mathbf{H}) \,. \end{displaymath} between the pointed $(k-1)$-[[connected]] objects and the groupal [[Ek-algebra]] objects in $\mathbf{H}$. \end{theorem} This is (\hyperlink{LurieAlgebra}{Lurie, Higher Algebra, theorem 5.1.3.6}). Specifically for $\mathbf{H} =$ [[Top]], this reduces to the classical theorem by [[Peter May]] \begin{theorem} \label{}\hypertarget{}{} Let $Y$ be a [[topological space]] equipped with an action of the [[little cubes operad]] $\mathcal{C}_k$ and suppose that $Y$ is grouplike. Then $Y$ is homotopy equivalent to a $k$-fold loop space $\Omega^k X$ for some pointed topological space $X$. \end{theorem} This is [[Ek-Algebras|EkAlg, theorem 1.3.16.]] \begin{remark} \label{LoopingDeloopingDegree1InTopos}\hypertarget{LoopingDeloopingDegree1InTopos}{} For $k = 1$ we have a looping/delooping equivalence \begin{displaymath} Grp(\mathbf{H}) \stackrel{\overset{\Omega}{\longleftarrow}}{\underset{\mathbf{B}}{\longrightarrow}} \mathbf{H}_{\geq 1}^{\ast /} \end{displaymath} between pointed connected objects in $\mathbf{H}$ and grouplike [[A-∞ algebra]] objects in $\mathbf{H}$: [[∞-group]] objects in $\mathbf{H}$. \end{remark} \begin{remark} \label{}\hypertarget{}{} If the ambient [[(∞,1)-topos]] has [[homotopy dimension]] 0 then every connected object $E$ admits a point $* \to E$. Still, the [[(∞,1)-category]] of pointed connected objects differs from that of unpointed connected objects (because in the latter the [[natural transformation]]s may have nontrivial components on the point, while in the former case they may not). The connected objects $E$ which fail to be [[∞-group]]s by failing to admit a point are of interest: these are the \emph{[[∞-gerbes]]} in the [[(∞,1)-topos]]. \end{remark} \hypertarget{for_cohesive_groupoids}{}\subsubsection*{{For cohesive $\infty$-groupoids}}\label{for_cohesive_groupoids} A special case of the parameterized $\infty$-groupoids above are [[cohesive ∞-groupoid]]s. Looping and delooping for these is discussed at [[cohesive (∞,1)-topos -- structures]] in the section . \hypertarget{for_categories}{}\subsubsection*{{For $(\infty,n)$-categories}}\label{for_categories} See [[delooping hypothesis]]. \hypertarget{relation_to_looping_and_suspension}{}\subsection*{{Relation to looping and suspension}}\label{relation_to_looping_and_suspension} For $A$ any monoidal [[space]], we may [[forgetful functor|forget]] its monoidal structure and just remember the underlying [[space]]. The formation of [[loop space object]]s composed with this [[forgetful functor]] has a [[left adjoint]] $\Sigma$ which forms \emph{[[suspension objects]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[loop space object]], [[free loop space object]], \begin{itemize}% \item [[delooping]], \textbf{looping and delooping} \item [[loop space]], [[free loop space]], [[derived loop space]] \end{itemize} \item [[suspension object]] \begin{itemize}% \item [[suspension]], [[reduced suspension]] \end{itemize} \end{itemize} [[!include k-monoidal table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Section 6.1.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} Section 5.1.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]} \end{itemize} [[!redirects looping]] [[!redirects looping and delooping]] \end{document}