\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{magnetic charge} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{MagneticChargeAnomaly}{Magnetic charge anomaly}\dotfill \pageref*{MagneticChargeAnomaly} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Maxwell's equations for the [[electromagnetic field]] $F \in \Omega^2(X)$ on a $d$-dimensional [[spacetime]] $X$ in the presence of [[electric current]] $j_{el} \in \Omega^{d-1}(X)$ read \begin{displaymath} d F = 0 \end{displaymath} \begin{displaymath} d \star F = j_{el} \,. \end{displaymath} Formally this suggests an immediate generalization where a [[conserved current]] called the \textbf{magnetic current} $j_{mag} \in \Omega^{3}(X)$ is introduced and the first of the equations above is replaced by \begin{displaymath} d F = j_{mag} \,. \end{displaymath} The corresponding [[charge]] is the [[magnetic charge]]. One thing to notice about this is that \begin{itemize}% \item net magnetic charge has not been observed in nature. \end{itemize} The other thing is a more conceptual problem: the [[electromagnetic field|Dirac quantization condition]] says that the $2$-form $F$ is not entirely arbitrary, but constrained to be the characteristic curvature $2$-form of a degree-$2$ cocycle in [[ordinary differential cohomology]], for instance the curvature $2$-form of a $U(1)$-[[principal bundle]] [[connection on a bundle|with connection]]. But this necessarily implies that $d F = 0$. Indeed, to circumvent dealing with this problem Dirac, in his original argument, has considered removing from $X$ the support of any magnetic charge density. It was [[Dan Freed]] in (\hyperlink{Freed}{Freed}) who discussed that the global description of the [[electromagnetic field]] does make sense even in the presence of electric current if one generalizes the model of a degree-$2$ [[ordinary differential cohomology|differential cocycle]] to that of a [[twisted cohomology|twisted]] cocycle. The magnetic current $3$-form $j_{mag}$ is then realized as the curvature characteristic $3$-form of a degree-$3$ cocycle in [[ordinary differential cohomology]] $\hat j_{mag}$, the [[electromagnetic field]] $F$ is the curvature characteristic $2$-form of a degree-$2$ [[twisted cohomology|twisted]] differential cocycle $\hat F$ and the equation \begin{displaymath} d F = j_{mag} \end{displaymath} expresses the twisting of $\hat F$ by $\hat j_{mag}$ at the level of curvature forms. This means that Dirac almost found [[bundle gerbe]]s already in 1931, had he not discussed only the neighbourhood of magnetic monopoles. \hypertarget{MagneticChargeAnomaly}{}\subsection*{{Magnetic charge anomaly}}\label{MagneticChargeAnomaly} Short of an experimental detection of magnetic monopoles the above considerations are of little practical relevance for ordinary [[electromagnetism]]. In their (straightforward) generalization to higher abelian [[gauge theory]] they do, however, serve to provide a more complete conceptual picture that provides the conceptual bases for effects such as the [[Green–Schwarz mechanism]]. Namely from the very fact that in the presence of magnetic charge the gauge field $\hat F$ is a twisted cocycle, it follows that the standard [[path integral|action functional]] for electrically charged quantum particles -- the one whose consideration led Dirac to his Dirac quantization condition -- in general has a [[quantum anomaly]]. To see this, consider the following. In the simplest case we consider a single electrically charged particle with worldline $\gamma : [0,1] \to X$ propagating inside a single patch $U_i \to X$ of some [[cover]] over which the [[electromagnetic field]] is represented by a [[Deligne cohomology|Deligne cocycle]] with $1$-form $A_i \in \Omega^1(U_i)$. Then then action functional for the coupling of the particle to the background [[electromagnetic field]] is \begin{displaymath} (\hat F, \gamma) \mapsto \exp( -2 \pi i \int_\gamma A_i) \in U(1) \,. \end{displaymath} This may be rewritten by introducing the corresponding distributional $(d-1)$-form current $(j_{el})_i \in \Omega^{d-1}(U_i)$ as \begin{displaymath} (\hat F, \gamma) \mapsto \exp( -2 \pi i \int_{U_i} (j_{el})_i \wedge A_i) \in U(1) \,. \end{displaymath} This integrand may be recognized as the local connection $d$-form of the [[cup product]] of the Deligne $(d-1)$-cocycle $\hat {j_{el}}$ and the Deligne $2$-cocycle $\hat F$. This way \begin{displaymath} (\hat F, \gamma) \mapsto \exp( -2 \pi i \int_X \hat{j_{el}} \cdot \hat F) \in U(1) \,, \end{displaymath} where now the integral including the prefactor of $- 2 \pi i$ denotes push-forward in cohomology along $X \to {*}$, and we canonically identify degree-$0$ [[Deligne cohomology]] of the point with $U(1)$. So far this is the formulation in [[differential cohomology]] of the ordinary action functional for the coupling of electric charges $\hat {j_{el}}$ to the [[electromagnetic field]] $\hat F$. But in this formulation one can discuss what happens to this when a non-vanishing magnetic current $\hat {j_{mag}}$ is present. In that case $\hat F$ is no longer a plain $2$-cocycle, but a twisted $2$-cocycle. Accordingly, the above push-forward to the point produces not a $U(1)$-valued \emph{function} of $(\hat F, \hat {j_{el}})$, but a ``twisted function'', i.e. a section of a [[vector bundle|line bundle]]. Since $\hat F$ is twisted by $\hat {j_{mag}}$, this line bundle is the $2$-cocycle \begin{displaymath} \exp( -2 \pi i \int_X \hat{j_{el}} \cdot \hat {j_{mag}}) \,. \end{displaymath} (\ldots{}discussion of how this is a $2$-cocycle on configuration space goes here\ldots{}) Comparing with the discussion at [[quantum anomaly]], it follows that the non-triviality of this $2$-cocycle is the \emph{higher gauge theory anomaly} of the ordinary action functional describing the coupling of electric charges to the [[electromagnetic field]] in the presense of magnetic charges. This phenomenon has traditionally been known somewhat implicitly in the context of the [[Green–Schwarz mechanism]]. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[conserved current]], [[charge]] \item [[electric charge]], \textbf{magnetic charge} \item [[color charge]] \item [[flux]] \item [[dyon]] \item [[magnetic field]] \item [[magnetic moment]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Magnetic charge for general [[compact Lie groups]] as [[gauge groups]] was first discussed in \begin{itemize}% \item [[François Englert]], P. Windey, \emph{Quantization Condition For `t Hooft Monopoles In Compact Simple Lie Groups}, Phys. Rev. D14 (1976) 2728-2731. \end{itemize} In \begin{itemize}% \item P. Goddard, J. Nuyts, and [[David Olive]], \emph{Gauge Theories And Magnetic Charge}, Nucl. Phys. B125 (1977) 1-28. \end{itemize} it was first noticed that when [[electric charge]] takes values in the [[weight lattice]] of the [[gauge group]], then [[magnetic charge]] takes values in the lattice of what is now called the [[Langlands dual group]]. (This led to Montonen-Olive's [[S-duality]] [[conjecture]]). The interpretation of magnetic charge in terms of degree-3 cocycles in [[ordinary differential cohomology]] is in the introduction-section of \begin{itemize}% \item [[Dan Freed]], \emph{[[Dirac charge quantization and generalized differential cohomology]]} (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv}) \end{itemize} [[!redirects magnetic current]] [[!redirects magnetic charges]] \end{document}