\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{mate} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{naturality}{Naturality}\dotfill \pageref*{naturality} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{multivariable_mates}{Multi-variable mates}\dotfill \pageref*{multivariable_mates} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{prop} \label{MateBijection}\hypertarget{MateBijection}{} Given a [[2-category]] $K$, [[adjunction|adjoint pairs]] $(\eta,\epsilon) \colon f \dashv u \colon b \to a$ and $(\eta',\epsilon') \colon f' \dashv u' \colon b' \to a'$ , and [[1-morphisms|1-cells]] $x \colon a \to a'$ and $y \colon b \to b'$, there is a [[bijection]] \begin{displaymath} K(a,b')(f' x,y f) \cong K(b,a')(x u,u' y) \end{displaymath} given by [[pasting]] with the [[unit of an adjunction|unit]] of one adjunction and the [[counit of an adjunction|counit]] of the other, i.e. \begin{displaymath} \itexarray{ a & \overset{x}{\to} & a' \\ \mathllap{f} \downarrow & \mathllap{\lambda} \Downarrow & \downarrow \mathrlap{f'} \\ b & \underset{y}{\to} & b' } \;\;\;\;\; \mapsto \;\;\;\;\; \itexarray{ b & \overset{u}{\to} & a & \overset{x}{\to} & a' & \overset{1}{\to} & a' \\ \mathllap{1} \downarrow & \mathllap{\epsilon} \Downarrow & \mathllap{f} \downarrow & \mathllap{\lambda} \Downarrow & \downarrow \mathrlap{f'} & \Downarrow \mathrlap{\eta'} & \downarrow \mathrlap{1} \\ b & \underset{1}{\to} & b & \underset{y}{\to} & b' & \underset{u'}{\to} & a' } \end{displaymath} and \begin{displaymath} \itexarray{ b & \overset{y}{\to} & b' \\ \mathllap{u} \downarrow & \mathllap{\mu} \Uparrow & \downarrow \mathrlap{u'} \\ a & \underset{x}{\to} & a' } \;\;\;\;\; \mapsto \;\;\;\;\; \itexarray{ a & \overset{f}{\to} & b & \overset{y}{\to} & b' & \overset{1}{\to} & b' \\ \mathllap{1} \downarrow & \mathllap{\eta} \Uparrow & \mathllap{u} \downarrow & \mathllap{\mu} \Uparrow & \downarrow \mathrlap{u'} & \Uparrow \mathrlap{\epsilon'} & \downarrow \mathrlap{1} \\ a & \underset{1}{\to} & a & \underset{x}{\to} & a' & \underset{f'}{\to} & b' } \end{displaymath} \end{prop} \begin{proof} That this is a bijection follows easily from the [[triangle identities]]. \end{proof} \begin{defn} \label{}\hypertarget{}{} The 2-cells $\lambda$ and $\mu$ in prop. \ref{MateBijection} are called \textbf{mates} (or sometimes \textbf{conjugates}) with respect to the adjunctions $f \dashv u$ and $f' \dashv u'$ (and to the 1-cells $x$ and $y$). \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} Strict [[2-functors]] preserve adjunctions and [[pasting diagrams]], so that if $F \colon K \to J$ is a 2-functor and if $\lambda$ and $\mu$ are mates wrt $f \dashv u$ and $f' \dashv u'$ in $K$, then $F \lambda$ and $F \mu$ are mates wrt $F f \dashv F u$ and $F f' \dashv F u'$ in $J$. \end{prop} \begin{prop} \label{}\hypertarget{}{} If $\alpha \colon F \Rightarrow G$ is a [[2-natural transformation]], then the naturality identities $\alpha_b \circ F f = G f \circ \alpha_a$ and $\alpha_a \circ F u = G u \circ \alpha_b$ are mates wrt $F f \dashv F u$ and $G f \dashv G u$. \end{prop} \hypertarget{naturality}{}\subsubsection*{{Naturality}}\label{naturality} There are two [[double categories]] with objects those of $K$, vertical arrows [[adjoint pairs]] in $K$ and horizontal arrows 1-cells of $K$. In one the 2-cells are those of the form $\lambda$ above, while in the other they are those of the form $\mu$. It is easily shown, as in Kelly--Street, that the triangle identities and the definition of composition of adjoints make these two double categories isomorphic. So for any $K$ there is a double category $Adj(K)$, defined up to isomorphism as above but with mate-pairs in $K$ as 2-cells. What this means is that, for example, the mate of a square coming from a [[pasting diagram]] is given by pasting the mates of the individual 2-cells (whenever this makes sense). In the double category $Adj(K)$, every vertical arrow has both a [[companion]] (the left adjoint) and a [[conjoint]] (the right adjoint). (In fact, in some sense it is the universal double category cosntructed from $K$ with this property.) Therefore, it is equivalent to a [[2-category equipped with proarrows]]. More explicitly, there is a forgetful functor $L \colon Adj_V(K) \to K$ from the 2-category of objects, adjunctions and mate-pairs in $K$ to $K$ that sends an adjunction $f \dashv u$ to $f$. It is [[locally fully faithful 2-functor|locally fully faithful]], and moreover every $L f$ has a right adjoint in $K$ by definition; this gives the more traditional definition of a proarrow equipment. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} Let $F \dashv U \colon D \to C$ be an [[adjunction]] in the [[2-category]] [[Cat]], i.e. a pair of [[adjoint functors]], and $A \colon * \to C$ and $X \colon * \to D$ be objects of $C$ and $D$ considered as [[functors]] out of the [[terminal category]] $*$. Then taking mates with respect to $1 \dashv 1 \colon * \to *$ and $F \dashv U$ yields the familiar [[bijection]] \begin{displaymath} D(F A,X) \cong C(A,U X) \end{displaymath} and the pasting operations as above yield the usual definition of the isomorphism of adjunction by means of [[unit of an adjunction|unit]] and [[counit of an adjunction|counit]]. Moreover, the naturality of the mate correspondence yields [[natural isomorphism|naturality]] of the bijection. \end{example} \begin{example} \label{}\hypertarget{}{} If the ambient [[2-category]] $K$ is the [[delooping]] of a [[monoidal category]] $(\mathcal{C}, \otimes)$ in that \begin{displaymath} K \simeq \mathbf{B}_\otimes \mathcal{C} \end{displaymath} then an [[adjunction]] in $K$ is a pair of [[dual objects]] and the mate-construction is the construction of [[dual morphisms]] between [[dualizable objects]]. \end{example} \begin{example} \label{}\hypertarget{}{} Suppose given a [[commutative square]] (up to [[isomorphism]]) of [[functor]]s: \begin{displaymath} \itexarray{ & \overset{f^*}{\to} & \\ ^{g^*}\downarrow && \downarrow^{k^*}\\ & \underset{h^*}{\to} & } \end{displaymath} in which $f^*$ and $h^*$ have [[left adjoint]]s $f_!$ and $h_!$, respectively. (The classical example is a [[Wirthmüller context]].) Then the [[natural isomorphism]] that makes the square commute \begin{displaymath} k^* f^* \to h^* g^* \end{displaymath} has a mate \begin{displaymath} h_! k^* \to g^* f_! \end{displaymath} defined as the composite \begin{displaymath} h_! k^* \overset{\eta}{\to} h_! k^* f^* f_! \overset{\cong}{\to} h_! h^* g^* f_! \overset{\epsilon}{\to} g^* f_! \,. \end{displaymath} Ones says that the original square satisfies the \textbf{[[Beck-Chevalley condition]]} if this mate is an [[equivalence]]. \end{example} \hypertarget{multivariable_mates}{}\subsection*{{Multi-variable mates}}\label{multivariable_mates} There is a version of the mate correspondence that applies to [[two-variable adjunctions]] and $n$-variable adjunctions; see \hyperlink{CGR}{Cheng-Gurski-Riehl}. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Max Kelly]], [[Ross Street]], \emph{Review of the elements of 2-categories}, in Kelly (ed.), Category Seminar, LNM 420. \item [[Tom Leinster]], \emph{Higher operads, higher categories}, \href{http://arxiv.org/abs/math/0305049}{math.CT/0305049}, Section 6.1 \item [[Eugenia Cheng]], [[Nick Gurski]], [[Emily Riehl]], ``Multivariable adjunctions and mates'', \href{http://arxiv.org/abs/1208.4520}{arXiv:1208.4520}, (to appear: Journal of K-Theory). \end{itemize} Generalization to [[bicategories]] is discussed in \begin{itemize}% \item [[Aaron Lauda]], \S{}3 of \emph{Frobenius algebras and ambidextrous adjunctions}, Theory and Applications of Categories, 16:84--122, 2006. 52 \item [[Richard Garner]], [[Michael Shulman]], around 13.7 of \emph{Enriched categories as a free cocompletion} (\href{https://arxiv.org/abs/1301.3191}{arXiv:1301.3191}) \end{itemize} [[!redirects mates]] [[!redirects mate correspondence]] [[!redirects mates correspondence]] \end{document}