\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{mathematics education} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{philosophy}{}\paragraph*{{Philosophy}}\label{philosophy} [[!include philosophy - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{scope}{Scope}\dotfill \pageref*{scope} \linebreak \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{references_and_online_materials}{References and online materials}\dotfill \pageref*{references_and_online_materials} \linebreak \noindent\hyperlink{related_lab_pages}{Related $n$Lab pages}\dotfill \pageref*{related_lab_pages} \linebreak \noindent\hyperlink{software}{Software}\dotfill \pageref*{software} \linebreak \noindent\hyperlink{organizations_and_initiatives_in_math_education}{Organizations and initiatives in math education}\dotfill \pageref*{organizations_and_initiatives_in_math_education} \linebreak \noindent\hyperlink{individual_educators_and_their_work}{Individual educators and their work}\dotfill \pageref*{individual_educators_and_their_work} \linebreak \noindent\hyperlink{opinion_articles}{Opinion articles}\dotfill \pageref*{opinion_articles} \linebreak \noindent\hyperlink{other_references}{Other references}\dotfill \pageref*{other_references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \begin{quote}% $\mu\alpha\theta\eta\sigma\iota\varsigma$ - Learning (Gr.) \end{quote} This page will discuss approaches to \textbf{teaching of mathematics} (as it is usual in the subject, with emphasis on the pre-university level, where the care in didactical aspects is the most relevant) and the outstanding sources of the relevant materials about teaching. \hypertarget{scope}{}\paragraph*{{Scope}}\label{scope} Pedagogically well written introductory books in mathematics, rather than about pedagogical matter, are also of our concern, but they will preferably be posted under [[elementary mathematics]], [[introductions to mathematics]], [[elementary geometry]] and related pages. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} Most traditionally, teaching methods were improvized adaptations of communication of subject matter from the knowledgeable teacher to a learner. Modern educational theory is greatly influenced by the works on child psychology. In particular, it has been investigated which cognitive aspects can be achieved at certain age, or within certain educational or other cognitive experiences. It is now commonly accepted that the advanced and long term knowledge is better achieved if the learner is also a discoverer. This means in mathematics that the emphasis on procedural knowledge should be replaced by wider experience in which a student discovers her own ways to approach the problems which make up the subject. The teacher and the learning environment hence have to anticipate and foster also specific \emph{processes} in learning the subject rather then only the goals and supposed content matter. Many authors however acknowledge the importance of balance with more traditional coaching and somewhat standardized procedural techniques (micromanagement being counterproductive). While in most educational taxonomies application of knowledge comes only at very hi stages in taxonomy, applying and experiencing concepts in practice, applications and in interaction with technology is considered necessary even at initial steps, and lower degrees of learning the subject. This should be therefore taken into account when creating the goals of mathematics curricula. \hypertarget{references_and_online_materials}{}\subsection*{{References and online materials}}\label{references_and_online_materials} \begin{itemize}% \item wikipedia: \href{https://en.wikipedia.org/wiki/Mathematics_education}{mathematics education}, \href{https://en.wikipedia.org/wiki/Common_Core_State_Standards_Initiative}{Common Core State Standards Initiative}, \href{https://en.wikipedia.org/wiki/New_Math}{New Math}, \href{https://en.wikipedia.org/wiki/Moore_method}{Moore method}, \href{https://en.wikipedia.org/wiki/Modern_elementary_mathematics}{modern elementary mathematics}, \href{https://en.wikipedia.org/wiki/Van_Hiele_model}{Van Hiele model} \item \href{http://icme13.org}{13th International Congress on Mathematical Education}, Hamburg Aug 24-31, 2016 \item \href{http://GreenApples.wikispaces.com}{GreenApples} -- resources for new math teachers \end{itemize} \hypertarget{related_lab_pages}{}\subsubsection*{{Related $n$Lab pages}}\label{related_lab_pages} \begin{itemize}% \item [[New Math]] \item [[elementary mathematics]] \item [[foundations]] \end{itemize} \hypertarget{software}{}\subsubsection*{{Software}}\label{software} \begin{itemize}% \item \href{https://en.wikipedia.org/wiki/GeoGebra}{geogebra.org}, wikipedia: \href{https://en.wikipedia.org/wiki/GeoGebra}{geogebra} \end{itemize} \hypertarget{organizations_and_initiatives_in_math_education}{}\subsubsection*{{Organizations and initiatives in math education}}\label{organizations_and_initiatives_in_math_education} \begin{itemize}% \item \href{http://www.nctm.org}{NCTM} National Organization of Teachers of Mathematics \item \href{http://www.corestandards.org/Math}{Common Core} math standards \item Next Generation Science Standards $<$http://www.nextgenscience.org{\tt \symbol{62}} \item \href{http://www.mathunion.org/icmi}{ICMI} International Commision on Mathematical Instruction (founded in 1908, now under IMU) \item \href{http://www.mathunion.org/icmi/links/math-ed-associations}{websites of math education and math teacher associations} (a list maintained at ICMI) \item \href{http://www.imo-official.org}{International Mathematical Olympiad}, official site \end{itemize} \hypertarget{individual_educators_and_their_work}{}\subsubsection*{{Individual educators and their work}}\label{individual_educators_and_their_work} \begin{itemize}% \item Liping Ma, \emph{Knowing and Teaching Elementary Mathematics: Teachers' Understanding of Fundamental Mathematics in China and the United States} (Studies in Mathematical Thinking and Learning Series)\begin{itemize}% \item Liping Ma, \emph{A critique of the structure of U.S. elementary school mathematics}, Notices AMS, Oct 2013 \href{http://www.ams.org/notices/201310/fea-ma.pdf}{pdf} \item Liping Ma, \href{http://lipingma.net/math/math.html}{webpage} \item blog opinion \href{http://rationalmathed.blogspot.hr/2007/06/what-does-liping-ma-really-say.html}{What Does Liping Ma REALLY say?} \end{itemize} \item \href{http://www.ardm.eu/contenu/guy-brousseau-english}{Guy Brousseau} and at French \href{https://pt.wikipedia.org/wiki/Guy_Brousseau}{wikipedia} \item Harold W. Stevenson (educational psychologist), \emph{Mathematics learning in early childhood}, NCTM, 1985 \item John A. Van de Walle et al. \emph{Elementary and middle school mathematics. Teaching developmentally}, Pearson 2004, 2007, 2010, 2013 \item J. Mayberry (1983), \emph{The Van Hiele Levels of geometric thought in undergraduate preservice teachers}, Journal for Research in Mathematics Education 14 (1): 58--69, \href{http://dx.doi.org/10.2307/748797}{doi} \href{http://www.jstor.org/stable/748797}{jstor} \item [[Hans Freudenthal]], \emph{Why to teach mathematics so as to be useful}, 1968, \href{https://promathmedia.files.wordpress.com/2013/09/freudenthal-1968.pdf}{pdf} \item (on [[Hans Freudenthal]]`s school) Marja van den Heuvel-Panhuizen, Paul Drijvers, \emph{Realistic Mathematics Education}, \href{https://promathmedia.files.wordpress.com/2013/09/encyclopedia-realistic-mathematics-education_ref.pdf}{pdf} \end{itemize} \hypertarget{opinion_articles}{}\subsubsection*{{Opinion articles}}\label{opinion_articles} \begin{itemize}% \item Elizabeth Green, \href{http://www.nytimes.com/2014/07/27/magazine/why-do-americans-stink-at-math.html}{Why Do Americans Stink at Math?}, New York Times opinion story (moral: good ideas in the reforms never materialized in practice) \item Ralph A. Raimi, \href{http://www.math.rochester.edu/people/faculty/rarm/smsg.html}{Whatever Happened to the New Math?} \item [[Richard Askey]], \emph{Good intentions are not enough}, \href{http://www.math.wisc.edu/~askey/ask-gian.pdf}{pdf} \item \href{https://www.facebook.com/public/%D0%9C%D0%B0%D1%80%D1%96%D1%8F-%D0%91%D0%BE%D0%B9%D0%BA%D0%BE}{Mariya Boyko}, \emph{The ``New Math'' Movement in the U.S. vs Kolmogorov's Math Curriculum Reform in the U.S.S.R.}, \href{https://mariyaboyko12.wordpress.com/2013/08/03/the-new-math-movement-in-the-u-s-vs-kolmogorovs-math-curriculum-reform-in-the-u-s-s-r}{html} \item R. Balian, A. Connes, Bismut, Lafforgue, Serre, \emph{Les savoirs fondamentaux au service de l'avenir scientifique et technique}, \href{https://www.laurentlafforgue.org/textes/SavoirsFondamentaux.pdf}{pdf}, a text lamenting the current state of the scientific part of education in France \end{itemize} \hypertarget{other_references}{}\subsubsection*{{Other references}}\label{other_references} \begin{itemize}% \item G. Ziegler, \emph{Teaching and learning ``What is mathematics?''}, in Proc.ICM 2014, Seoul, vol. 4 \item Alexander Karp, Bruce R Vogeli (eds.), \emph{Russian mathematics education}, 2 vols, World Sci. Publ. \item Lingguo Bu, Robert Schoen (eds.), \emph{Model centered learning}, Pathways to mathematical understanding using geogebra, vol. 6 of Modeling and simulations for learning and instruction \item Jennifer A. Kaminski, Vladimir M. Sloutsky, Andrew F. Heckle, \emph{The advantage of abstract examples in learning math}, \href{https://promathmedia.files.wordpress.com/2013/02/2-1-the-advantage-of-abstract-examples-in-learning-math2.pdf}{Science Magayibe 2012 pdf} \end{itemize} Cognitive, linguistic and cultural aspects of mathematics (which are of relevance for learning) are emphasized in \begin{itemize}% \item George Lakoff, Rafael E. N\'u{}\~n{}ez, \emph{Where mathematics comes from}, Basic Books 2000, xviii+493 pp. \href{http://www.ams.org/mathscinet-getitem?mr=1794854}{MR2001i:00013} (cf. also wikipedia: \href{https://en.wikipedia.org/wiki/George_Lakoff#Mathematics}{George Lakoff\#Mathematics}) \end{itemize} category: education [[!redirects mathematical education]] \end{document}