\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{matroid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{combinatorics}{}\paragraph*{{Combinatorics}}\label{combinatorics} [[!include combinatorics - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{modeltheoretic_geometry}{Model-theoretic geometry}\dotfill \pageref*{modeltheoretic_geometry} \linebreak \noindent\hyperlink{combinatorial_optimization}{Combinatorial optimization}\dotfill \pageref*{combinatorial_optimization} \linebreak \noindent\hyperlink{mnevs_theorem}{Mnev's theorem}\dotfill \pageref*{mnevs_theorem} \linebreak \noindent\hyperlink{categories_of_matroids}{Categories of matroids}\dotfill \pageref*{categories_of_matroids} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{matroid}, due to Hassler Whitney, is fundamental to [[combinatorics]], giving several different ways of encoding/defining and presenting a general notion of ``independence'', e.g., [[linearly independent subset|linear independence]] in a [[vector space]], algebraic independence in a [[field extension]], etc. There is also a similar concept of an [[oriented matroid]]; every oriented matroid has an underlying matroid. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} A \textbf{matroid} on a set $X$ is a [[Moore closure|closure operator]] $cl: P(X) \to P(X)$ satisfying the \emph{exchange axiom}: if $a \in cl(S \cup\{b\}) \cap \neg cl(S)$, then $b \in cl(S \cup\{a\}) \cap \neg cl(S)$. \end{defn} Usually when combinatorialists speak of matroids as such, $X$ is taken to be a [[finite set]]. A typical example is $X$ some finite subset of a vector space $V$, taking $cl(S) \coloneqq X \cap Span(S)$ for any $S \subseteq X$. Under this definition, a subset $S \subseteq X$ is \emph{independent} if there is a strict inclusion $cl(T) \subset cl(S)$ for every strict inclusion $T \subset S$ (this is the same as requiring $x \notin cl(S\setminus \{x\})$ for every $x \in S$). Again under this definition, $S$ is a \emph{basis} if $cl(S) = X$ and $S$ is independent. A \emph{hyperplane} is a closed subset $S$ (meaning $cl(S) = S$) that is maximal among proper closed subsets of $X$. It is possible to axiomatize the notion of matroid by taking bases as the primitive notion, or independent sets as the primitive notion, or hyperplanes as the primitive notion, etc. -- Rota (after Birkhoff) speaks of \emph{cryptomorphism} between these differing definitions. Much of the power and utility of matroid theory comes from this multiplicity of definitions and the possibility of moving seamlessly between them; for example, a matroid structure might be easy to detect from the viewpoint of one definition, but not from another. \begin{prop} \label{dim1}\hypertarget{dim1}{} Any two bases of a matroid $X$ have the same [[cardinality]], provided that one of them is finite. \end{prop} The cardinality of such a basis is called of course the \emph{dimension} of the matroid. Clearly then a finite matroid has a well-defined dimension. \begin{proof} First, suppose $A$ is an independent set and $B$ is a finite basis, and suppose there are subsets $A_0 \subseteq A, B_0 \subseteq B$ such that $A_0 \cup B_0$ is a basis. We claim that for each $a \in A \setminus A_0$, there exists $b \in B_0$ such that $A_0 \cup \{a\} \cup (B_0 \setminus \{b\})$ is a basis. For, let $C \subseteq B_0$ be of minimum cardinality such that $a \in cl(A_0 \cup C)$; we know $C$ must be inhabited since $a \notin cl(A \setminus \{a\}) \supseteq cl(A_0)$; clearly $C \cap A_0 = \emptyset$. So let $b$ be an element of $C$. Since by minimality of $C$ we have \begin{displaymath} a \in cl(A_0 \cup (C \setminus \{b\}) \cup \{b\}) \cap \neg cl(A_0 \cup (C \setminus \{b\})), \end{displaymath} it follows from the exchange axiom that $b \in cl(A_0 \cup (C \setminus \{b\}) \cup \{a\})$. Thus $b \in cl(A_0 \cup (B_0 \setminus \{b\}) \cup \{a\})$, whence \begin{displaymath} cl(A_0 \cup (B_0 \setminus \{b\}) \cup \{a\}) = cl(A_0 \cup B_0 \cup \{a\}) = X \end{displaymath} so that $D \coloneqq A_0 \cup (B_0 \setminus \{b\}) \cup \{a\}$ ``spans'' $X$. Also $D$ is independent: if $x \in D$ and $x \neq a$, then \begin{displaymath} cl(D \setminus \{x\}) \subseteq cl((A_0 \cup B_0) \setminus \{x\}) \end{displaymath} with neither side containing $x$ since $A_0 \cup B_0$ is independent; whereas if $x = a$ and supposing to the contrary that $a \in cl(D \setminus \{a\}) = cl((A_0 \cup (B_0 \setminus \{b\}))$, we conclude $A_0 \cup (B \setminus \{b\})$ has the same span as $D$. Since $D$ already spans, $b \in cl(A_0 \cup (B_0 \setminus \{b\}))$, again impossible since $A_0 \cup B_0$ is independent. This proves the claim. Again assuming $A$ independent and $B$ is a finite basis, now we show that $card(A) \leq card(B)$, which will finish the proof. Let $n = card(B)$, and suppose on the contrary that there are distinct elements $a_1, \ldots, a_{n+1} \in A$. Set $A_0 = \emptyset$ and $B_0 = B$. Applying the claim above inductively, we have that $\{a_1, \ldots, a_i\} \cup (B \setminus \{b_1, \ldots, b_i\})$ is a basis for $1 \leq i \leq n$, so in particular $\{a_1, \ldots, a_n\}$ spans $X$. Hence $a_{n+1} \in cl(\{a_1, \ldots, a_{n}\})$, contradicting the independence of $A$. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Vector spaces, algebraic closures, graphs, restrictions, localizations, \ldots{} \begin{itemize}% \item A \emph{graphic matroid} is a matroid $M$ derived from a [[simple graph]] by taking the underlying set of $M$ to be the set of edges $E$, and taking as independent sets of $M$ those $S \subseteq E$ such that the edges of $S$ (and their incident vertices) form a [[forest]], i.e., a graph without cycles. \item A \emph{vector matroid} is a matroid $M$ derived from a a collection of vectors $E$ in a vector space. Independent sets of $M$ are those $S \subseteq E$ such that $S$ is linearly independent. Providing an equivalence to such a vector matroid is the problem of representability over a specified field. \item An \emph{algebraic matroid} for a field extension $K/F$ is derived from a collection of elements $E \subset K$ and independent sets of $M$ are those such that $F(S)$ has transcendence degree equal to $\mid S \mid$ so all of $S$ are algebraically independent. \item If $M$ is a (finite) matroid, then the \emph{matroid dual} $M^\ast$ of $M$ has the same underlying set as $M$, and where a basis in $M^\ast$ is precisely the complement of a basis of $M$. It follows that $M^{\ast\ast} \cong M$ (this is even an equality according to the definition). \end{itemize} \hypertarget{modeltheoretic_geometry}{}\subsection*{{Model-theoretic geometry}}\label{modeltheoretic_geometry} Essentially the very same notion arises in model theory, except instead of being called a matroid it is called a ``pregeometry'' or ``geometry'', and in contrast to combinatorialists, model theorists usually mean \emph{infinite} matroids. The notion arises in the study of geometry of strongly minimal sets, with applications to stability theory (part of Shelah's classification theory). \begin{defn} \label{}\hypertarget{}{} A \emph{pregeometry} is a (possibly infinite) matroid (given by a set $X$ equipped with a closure operator $cl$) that is \emph{finitary}: for all $S \subseteq X$, if $x \in cl(S)$ then $x \in cl(S_0)$ for some finite subset $S_0 \subseteq S$. A \textbf{geometry} is a pregeometry such that $cl(\emptyset) = \emptyset$ and $cl(\{x\}) = \{x\}$ for every $x \in X$. \end{defn} (See also [[geometric stability theory]].) The language of independence, spanning, and basis carry over as before. A maximal independent set spans (i.e., is a basis), and maximal independent sets exist according to [[axiom of choice|Zorn's lemma]]. Again we have a notion of dimension by the following proposition. \begin{prop} \label{welldefined}\hypertarget{welldefined}{} In a pregeometry $(X, cl)$, any two bases have the same cardinality. \end{prop} \begin{proof} We already \hyperlink{dim1}{proved this} in the case where the pregeometry has a finite basis. Otherwise, if $A$ is independent and $B$ is an infinite basis, then \begin{displaymath} A = A \cap X = A \cap \bigcup_{B_0 \subseteq B\; finite} cl(B_0) = \bigcup_{B_0 \subseteq B\; finite} A \cap cl(B_0) \end{displaymath} where the second equality follows from the finitary condition. Since each summand $A \cap cl(B_0)$ has cardinality less than that of $B_0$ by independence of $A$ (noting that $B_0$ is a basis of $cl(B_0)$), the union on the right has cardinality bounded above by $card(B)$. From $card(A) \leq card(B)$ it follows that any two bases have the same cardinality. \end{proof} \hypertarget{combinatorial_optimization}{}\subsection*{{Combinatorial optimization}}\label{combinatorial_optimization} \hypertarget{mnevs_theorem}{}\subsection*{{Mnev's theorem}}\label{mnevs_theorem} Mn\"e{}v's universality theorem says that any [[semialgebraic set]] in $\mathbb{R}^n$ defined over integers is stably equivalent to the realization space of some oriented matroid. \hypertarget{categories_of_matroids}{}\subsection*{{Categories of matroids}}\label{categories_of_matroids} To be written, possibly with some original research. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{http://en.wikipedia.org/wiki/Matroid}{matroid}, \href{http://en.wikipedia.org/wiki/Mnev%27s_universality_theorem}{Mn\"e{}v's universality theorem}, \href{http://en.wikipedia.org/wiki/Oriented_matroid}{oriented matroid} \item Hassler Whitney, \emph{On the abstract properties of linear dependence}, American Journal of Mathematics (The Johns Hopkins University Press) 57 (3): 509--533, 1935, \href{http://jstor.org/stable/2371182}{jstor}, \href{http://www.ams.org/mathscinet-getitem?mr=1507091}{MR1507091} \item J. Oxley, \emph{What is a matroid}, \href{http://www.math.lsu.edu/~oxley/survey4.pdf}{pdf} \item James G. Oxley, \emph{Matroid theory}, Oxford Grad. Texts in Math. 1992, 2010 \item some papers on Coxeter matroids \href{http://www.math.ufl.edu/~white/cox.html}{html} \item MathOverflow question \href{http://mathoverflow.net/questions/72154/mnevs-universality-corollaries-quantitative-versions}{Mn\"e{}v's universality corollaries, quantitative versions} \item Eric Katz, Sam Payne, \emph{Realization space for [[tropical geometry|tropical]] fans}, \href{http://users.math.yale.edu/~sp547/pdf/Realization-spaces.pdf}{pdf} \item Nikolai E. Mnev, \emph{The universality theorems on the classification problem of configuration varieties and convex polytopes varieties}, pp. 527-543, in ``Topology and geometry: Rohlin Seminar.'' Edited by O. Ya. Viro. Lecture Notes in Mathematics, \textbf{1346}, Springer 1988; \emph{A lecture on universality theorem} (in Russian) \href{http://club.pdmi.ras.ru/~panina/9.pdf}{pdf} \item Talal Ali Al-Hawary, \emph{Free objects in the category of geometries}, \href{http://www.emis.de/journals/HOA/IJMMS/Volume26_12/770.pdf}{pdf} \item Talal Ali Al-Hawary, D. George McRae, \emph{Toward an elementary axiomatic theory of the category of LP-matroids}, Applied Categorical Structures \textbf{11}: 157--169, 2003, \href{http://dx.doi.org/10.1023/A:1023557229668}{doi} \item Hirokazu Nishimura, Susumu Kuroda, \emph{A lost mathematician, Takeo Nakasawa: the forgotten father of matroid theory} 1996, 2009 \item William H. Cunningham, \emph{Matching, matroids, and extensions}, Math. Program., Ser. B \textbf{91}: 515--542 (2002) \href{http://dx.doi.org/10.1007/s101070100256}{doi} \item L. Lov\'a{}sz, \emph{Matroid matching and some applications}, J. Combinatorial Theory B \textbf{28}, 208--236 (1980) \item A. Bj\"o{}rner, M. Las Vergnas, B. Sturmfels, N. White, G.M. Ziegler, \emph{Oriented matroids}, Cambridge Univ. Press 1993, 2000, \href{http://reslib.com/book/Oriented_Matroids}{view at reslib.com} \item Matthew Baker, \emph{Matroids over hyperfields}, \href{http://arxiv.org/abs/1601.01204}{arxiv/1601.01204} \item David Marker, \emph{Model Theory: An Introduction}, Graduate Texts in Math. 217, Springer-Verlag New York, 2002. \item Tom Braden, Carl Mautner, \emph{Matroidal Schur algebras}, \href{http://arxiv.org/abs/1609.04507}{arxiv/1609.04507} \item P. S. Kung, \emph{A Source Book in Matroid Theory}, Birkh\"a{}user, Boston, 1986. \end{itemize} [[!redirects matroids]] [[!redirects pregeometry]] [[!redirects pregeometries]] \end{document}