\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{maximal compact subgroup} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExamplesForLieGroups}{For Lie groups}\dotfill \pageref*{ExamplesForLieGroups} \linebreak \noindent\hyperlink{counterexamples}{Counterexamples}\dotfill \pageref*{counterexamples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $G$ a [[topological group]] a \emph{compact subgroup} is a topological [[subgroup]] $K \subset G$ which is a [[compact group]]. \begin{defn} \label{}\hypertarget{}{} A [[compact topological space|compact]] [[subgroup]] $K \hookrightarrow G$ is called \textbf{maximal compact} if every compact subgroup of $G$ is [[conjugation|conjugate]] to a subgroup of $K$. \end{defn} If it exists then, by definition, it is unique up to conjugation. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{defn} \label{AlmostConnected}\hypertarget{AlmostConnected}{} A [[locally compact topological group]] $G$ is called \textbf{[[almost connected topological group|almost connected]]} if the [[quotient]] [[topological space]] $G/G_0$ (of $G$ by the [[connected component]] of the neutral element) is [[compact topological space|compact]]. \end{defn} See for instance (\hyperlink{HofmannMorris}{Hofmann-Morris, def. 4.24}). \begin{defn} \label{}\hypertarget{}{} Every [[compact topological space|compact]] and every [[connected topological space|connected]] [[topological group]] is almost connected. Also every [[quotient]] of an almost connected group is almost connected. \end{defn} \begin{theorem} \label{MalcevIwasawa}\hypertarget{MalcevIwasawa}{} Let $G$ be a [[locally compact topological space|locally compact]] \hyperlink{AlmostConnected}{almost connected} [[topological group]]. Then \begin{itemize}% \item $G$ has a maximal compact subgroup $K$; \item the [[coset]] space $G/K$ is [[homeomorphism|homeomorphic]] to a [[Euclidean space]]. \end{itemize} \end{theorem} This is due to (\hyperlink{Malcev}{Malcev}) and (\hyperlink{Iwasawa}{Iwasawa}). See for instance (\hyperlink{Stroppel}{Stroppel, theorem 32.5}). \begin{theorem} \label{}\hypertarget{}{} Let $G$ be a [[locally compact topological space|locally compact]] \hyperlink{AlmostConnected}{almost connected} [[topological group]]. Then a [[compact topological space|compact]] subgroup $K \hookrightarrow G$ is maximal compact precisely if the [[coset]] space $G/K$ is [[contractible space|contractible]] (in which case, due to theorem \ref{MalcevIwasawa}, it is necessarily [[homeomorphism|homeomorphic]] to a [[Euclidean space]]). \end{theorem} This is (\hyperlink{Antonyan}{Antonyan, theorem 1.2}). \begin{remark} \label{}\hypertarget{}{} In particular, in the above situation the [[subgroup]] inclusion \begin{displaymath} K \hookrightarrow G \end{displaymath} is a [[homotopy equivalence]] of [[topological spaces]]. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExamplesForLieGroups}{}\subsubsection*{{For Lie groups}}\label{ExamplesForLieGroups} The following table lists some [[Lie groups]] and their maximal compact Lie subgroups (e.g. \hyperlink{Conrad}{Conrad}). See also \emph{[[compact Lie group]]}. \newline | Lorentz / AdS [[pin group]] $Pin(q,p)$ | $Pin(q) \times Pin(q) / \{(1,1), (-1,-1)\}$ | The following table lists specifically the maximal compact subgroups of the ``$E$-series'' of Lie groups culminating in the [[exceptional Lie groups]] $E_n$. \begin{tabular}{l|l|l|l|l} $n$&[[real form]] $E_{n(n)}$&maximal compact subgroup $H_n$&$dim(E_{n(n)})$&$dim(E_{n(n)}/H_n )$\\ \hline 2&$SL(2, \mathbb{R}) \times \mathbb{R}$&$SO(2)$&4&3\\ 3&$SL(3,\mathbb{R}) \times SL(2,\mathbb{R})$&$SO(3) \times SO(2)$&11&7\\ 4&$SL(5, \mathbb{R})$&$SO(5)$&24&14\\ 5&$Spin(5,5)$&$(Sp(2) \times Sp(2))/\mathbb{Z}_2$&45&25\\ 6&[[E6&E6(6)]]&$Sp(4)/\mathbb{Z}_2$&78\\ 7&[[E7&E7(7)]]&$SU(8)/\mathbb{Z}_2$&133\\ 8&[[E8&E8(8)]]&$Spin(16)/\mathbb{Z}_2$&248\\ \end{tabular} \hypertarget{counterexamples}{}\subsubsection*{{Counterexamples}}\label{counterexamples} A maximal compact subgroup may not exist at all without the almost connectedness assumption. An example is the [[Prüfer group]] $\mathbb{Z}[1/p]/\mathbb{Z}$ endowed with the discrete ($0$-dimensional) smooth structure. This is a union of an increasing sequence of finite cyclic groups, each obviously compact. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally compact topological group]] \item [[compact Lie group]] \item [[maximal subgroup]] \item [[maximal torus]] \item [[reduction and lift of structure groups]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Textbooks with relevant material include \begin{itemize}% \item M. Stroppel, \emph{Locally compact groups}, European Math. Soc., (2006) \item Karl Hofmann, Sidney Morris, \emph{The Lie theory of connected pro-Lie groups}, Tracts in Mathematics 2, European Mathematical Society, (2000) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Maximal_compact_subgroup}{Maximal compact subgroup}} \end{itemize} Original articles include \begin{itemize}% \item A. Malcev, \emph{On the theory of the Lie groups in the large}, Mat.Sbornik N.S. vol. 16 (1945) pp. 163-189 \item K. Iwasawa, \emph{On some types of topological groups}, Ann. of Math. vol.50 (1949) pp. 507-558. \item M. Peyrovian, \emph{Maximal compact normal subgroups}, Proceedings of the American Mathematical Society, Vol. 99, No. 2, (1987) (\href{http://www.jstor.org/pss/2046647}{jstor}) \item Sergey A. Antonyan, \emph{Characterizing maximal compact subgroups} (\href{http://arxiv.org/abs/1104.1820v1}{arXiv:1104.1820v1}) \end{itemize} The maximal compact subgroups inside the (indefinite) rotation groups \begin{itemize}% \item [[Brian Conrad]], \emph{Examples of maximal compact subgroups} (\href{http://virtualmath1.stanford.edu/~conrad/210CPage/handouts/maxcompact.pdf}{pdf}) \end{itemize} [[!redirects maximal compact subgroups]] \end{document}