\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{maybe monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{kleisli_category}{Kleisli category}\dotfill \pageref*{kleisli_category} \linebreak \noindent\hyperlink{EMCategoryAndRelationToPointedObjects}{EM-category and Relation to pointed objects}\dotfill \pageref*{EMCategoryAndRelationToPointedObjects} \linebreak \noindent\hyperlink{relation_to_natural_number_objects}{Relation to natural number objects}\dotfill \pageref*{relation_to_natural_number_objects} \linebreak \noindent\hyperlink{on_the_augmented_simplex_category}{On the augmented simplex category}\dotfill \pageref*{on_the_augmented_simplex_category} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called the \emph{maybe monad} is a simple [[monad (in computer science)]] which is used to implement ``exceptions'' indicating the failure of a computation in terms of [[functional programming]]. On the type system the [[maybe monad]] is the operation $X \mapsto X \coprod \ast$. The idea here is that a function $X \longrightarrow Y$ in its [[Kleisli category]] is in the original category a function of the form $X \longrightarrow Y \coprod \ast$ so either returns indeed a value in $Y$ or else returns the unique element of the [[unit type]]/[[terminal object]] $\ast$ -- it is a \emph{[[partial function]]}. The latter case is naturally interpreted as ``no value returned'', hence as indicating a ``failure in computation''. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{quote}% under construction \end{quote} \hypertarget{kleisli_category}{}\subsubsection*{{Kleisli category}}\label{kleisli_category} The [[Kleisli category]] of the maybe monad on $Set$ is the category whose objects are sets, and whose morphisms are [[partial functions]]. This observation generalizes as follows: if $\mathbf{C}$ is an [[extensive category]] and has a [[terminal object]] $\ast$, then a morphism $g: X \to Y \coprod \ast$ as an object of the [[overcategory]] $\mathbf(C)/(Y \coprod \ast)$ determines (uniquely up to canonical isomorphism) an object \begin{displaymath} (f: X_1 \to Y, !: X_2 \to \ast) \in \mathbf{C}/Y \times \mathbf{C}/\ast \end{displaymath} such that $g = f \coprod !$, in other words a partial morphism $f: X \rightharpoonup Y$ whose domain of definition is a subobject $X_1 \hookrightarrow X$ with complement $X_2 \hookrightarrow X$. In brief, maps in the Kleisli category are partial maps with complemented domain. In particular, in the case of a [[Boolean topos]], the Kleisli category is the category of objects and partial maps; see also [[partial map classifier]]. \hypertarget{EMCategoryAndRelationToPointedObjects}{}\subsubsection*{{EM-category and Relation to pointed objects}}\label{EMCategoryAndRelationToPointedObjects} The [[algebra over a monad|algebras]] over the maybe monad are [[pointed objects]]. Moreover, assuming $\mathbf{C}$ has [[finite products]] and an appropriate form of [[distributive category|distributivity]] (which obtains if for example $\mathbf{C}$ is [[extensive category|lextensive]]), the maybe monad on $\mathbf{C}$ is a [[monoidal monad]] on the [[cartesian monoidal category]] $\mathbf{C}$. It follows (by the discussion at \emph{[[commutative monad]]}, see also (\hyperlink{Seal12}{Seal 12})) that its [[Eilenberg-Moore category]] of algebras canonically inherits the structure of a [[monoidal category]], at least under the mild assumption that it has [[reflexive coequalizers]]. Note that the maybe monad $T$ preserves reflexive coequalizers, so the monadic functor [[created limit|creates]] reflexive coequalizers if the base category has them; in this abstract setting the monoidal product on algebras $(X, \alpha: T X \to X)$, $(Y, \beta: T Y \to Y)$ is given explicitly as the [[coequalizer]] of $T(\alpha \times \beta): T(T X \times T Y) \to T(X \times Y)$ and \begin{displaymath} T(T X \times T Y) \stackrel{T(\phi_{X, Y})}{\to} T T(X \times Y) \stackrel{\mu}{\to} T(X \times Y) \end{displaymath} where $\phi$ is one of the structural constraints on the monoidal monad $T$ and $\mu$ is the multiplication on $T$. One finds that this coequalizer yields the usual [[smash product]] of pointed objects. \begin{remark} \label{}\hypertarget{}{} The smash product as the correct monoidal product can also be deduced in a perhaps more perspicuous manner if we assume more of the base category: that it is [[cartesian closed category|cartesian closed]], [[finite limit|finitely complete]], and finitely cocomplete. In that case we construct the [[internal hom]] of $T$-algebras, i.e., the internal hom of pointed objects $(Y, \beta: T Y \to Y)$ and $(Z, \gamma: T Z \to Z)$ directly as an [[equalizer]] of maps \begin{displaymath} \itexarray{ Z^Y & \to & T Z^{T Y} \\ & \mathllap{Z^\beta} \searrow & \downarrow \mathrlap{\gamma^{T Y}} \\ & & Z^{T Y} } \end{displaymath} where the top arrow expresses [[enriched functor|enriched functoriality]] of $T$ (which in turn is closely related to the [[strong functor|strength]] on $T$). The success of this is guaranteed by the [[commutative monad|commutativity]] of the monad (which here takes a particularly simple form, being given by the commutative \emph{[[monoid]]} $\ast$ with respect to coproduct $\coprod$). Then, by taking the monoidal product that is [[adjunct|adjoint]] to the [[internal hom]], one is led to the [[smash product]] $(X \wedge Y)_\ast$ all the same: that is, one can read off the smash product from the fact that pointed maps $X_\ast \to \hom_\ast(Y_\ast, Z_\ast)$ should correspond to pointed maps $(X \wedge Y)_\ast \to Z_\ast$. \end{remark} \hypertarget{relation_to_natural_number_objects}{}\subsubsection*{{Relation to natural number objects}}\label{relation_to_natural_number_objects} Regarding just the underlying [[endofunctor]] of the maybe monad, its [[initial algebra over an endofunctor]] is a [[natural numbers object]]. \hypertarget{on_the_augmented_simplex_category}{}\subsubsection*{{On the augmented simplex category}}\label{on_the_augmented_simplex_category} We may view the [[simplex category|augmented simplex category]] as the subcategory of $\Set$ whose objects are the finite [[von Neumann ordinals]] and whose morphisms are the monotone functions between them. Then the maybe monad on $\Set$ restricts to $\Delta_a$ to give the monad that sends the object $\mathbf{n}$ to $\mathbf{n+1}$ and the morphism $f:\mathbf{n}\to\mathbf{m}$ to the morphism $T(f):\mathbf{n+1}\to\mathbf{m+1}$ defined by \begin{displaymath} T(f)(k) = \begin{cases} f(k) & k \lt n\\ m & k = n \end{cases} \end{displaymath} In fact, $\Delta_a$ is freely generated by this structure and $\mathbf{0}$ in the sense that its objects are given by $\mathbf{n}=T^n\mathbf{0}$, the face maps are given by $\delta_i^n=T^{n-i-1}\eta_\mathbf{i}$, the degeneracy maps are given by $\sigma_i^n=T^{n-i-1}\mu_\mathbf{i}$, and the [[simplicial identities]] are precisely the monad axioms. Another way to put this is that $(\Delta_a,T,\mathbf{0})$ is the initial object of the $2$-category whose objects are categories equipped with a monad and an object. This means that if C is some other category equipped with a \textbf{co}monad and an object then we get a canonical functor $\Delta_a^\mathrm{op}\to C$ and hence an augmented [[simplicial object]] in $C$. In particular when $C$ is the [[Eilenberg-Moore category| category of algebras]] of a monad on $D$ we get a simplicial object for each algebra, whose underlying simplicial object in $D$ is the [[bar construction]]. The comonad $T^\mathrm{op}$ on $\Delta_a^\mathrm{op}$ induces the [[decalage\#DecalageComonad|Décalage comonad]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[state monad]] \item [[continuation monad]] \item [[successor monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Gavin J. Seal, \emph{Tensors, monads and actions} (\href{http://arxiv.org/abs/1205.0101}{arXiv:1205.0101}) \end{itemize} Around (0.4.24.2) in \begin{itemize}% \item [[Nikolai Durov]], \emph{New Approach to Arakelov Geometry} (\href{http://arxiv.org/abs/0704.2030}{arXiv:0704.2030}) \end{itemize} the algebraic structure of the would be ``[[field with one element]]'' is regarded as being the maybe monad, hence [[modules]] over $\mathbb{F}_1$ are defined to be [[algebra over a monad|monad-algebras]] over the maybe monad, hence [[pointed sets]]. [[!redirects maybe monads]] \end{document}