\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{measurable subset} \hypertarget{measurable_subsets}{}\section*{{Measurable subsets}}\label{measurable_subsets} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{modulo_null_sets}{Modulo null sets}\dotfill \pageref*{modulo_null_sets} \linebreak \noindent\hyperlink{abstract_measurable_sets}{Abstract measurable sets}\dotfill \pageref*{abstract_measurable_sets} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The measurable subsets of a [[measure space]] $(X,\mu)$ are those [[subsets]] $A$ of the [[underlying set]] $X$ for which the measure $\mu(A)$ is defined (at all, even possibly as infinite). Intuitively, one might expect every subset of $X$ to be measurable, and this is the case in some examples, but in the standard example of [[Lebesgue measure]] on the [[real line]], this is incompatible with the [[axiom of choice]]. (On the other hand, in [[dream mathematics]], where the full axiom of choice fails, every subset of the real line \emph{is} Lebesgue measurable.) Regardless, every subset $A$ of $X$ has both an [[outer measure]] $\mu^*(A)$ and an [[inner measure]] $\mu_*(A)$. The concept actually makes sense in any [[measurable space]] as well as in related contexts such as [[Cheng spaces]] and [[measurable locales]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Typically, the notion of measurable subset of $X$ is given axiomatically by a [[structure]] on the [[set]] $X$, usually a $\sigma$-[[sigma-algebra|algebra]] $\mathcal{M}$. The a subset of $X$ is \textbf{measurable} if it belongs to $\mathcal{M}$. Sometimes $\mathcal{M}$ is a weaker structure, such as a $\delta$-ring; see other variants at [[sigma-algebra]]. Then we require some subsidiary notions: $S$ is \textbf{relatively measurable} if $S \cap T$ belongs to $\mathcal{M}$ whenever $T$ does, and $S$ is \textbf{$\sigma$-measurable} if it is a [[union]] of a [[countable set|countable]] [[family of subsets|family]] of elements of $\mathcal{M}$. (The terms `relatively measurable' and `$\sigma$-measurable' are [[Toby Bartels|my own]]; I cannot find them in the literature. In the case of $\sigma$-measurable sets, the terminology follows a standard pattern. Halmos uses relatively measurable sets, but he doesn't seem to give them a name.) \hypertarget{modulo_null_sets}{}\subsection*{{Modulo null sets}}\label{modulo_null_sets} Besides the $\sigma$-algebra of measurable subsets, we may place another structure on $X$, a $\sigma$-[[sigma-ideal|ideal]] $\mathcal{N}$ in $\mathcal{M}$. (This structure also exists, for example, for any [[measure space]], and already for a [[Cheng space]] or a [[localisable measurable space]].) Then a \textbf{[[null set]]} is any subset of $X$ (measurable or not) contained in an element of $\mathcal{N}$. The null sets form a $\sigma$-ideal $\bar{\mathcal{N}}$ of the [[power set]] $\mathcal{P}X$, and we may equivalently begin with the $\sigma$-ideal of null sets as long as every null set is contained in a measurable null set. This allows two complementary modifications to the notion of measurable set: \begin{enumerate}% \item We may accept the [[union]] of any measurable set and any null set as measurable. Since this changes the meaning of `measurable', we may speak of $\mathcal{M}$-measurable and $(\mathcal{M},\mathcal{N})$-measurable sets. The collection of such sets may be denoted $\mathcal{M} \cup \bar{\mathcal{N}}$ (applying $\cup$ pointwise). \item We may regard two measurable sets as equivalent if their [[symmetric difference]] is a null set (and hence an element of $\mathcal{N}$). This defines an [[equivalence relation]] on $\mathcal{M}$; the collection of [[equivalence classes]] is denoted $\mathcal{M}/\mathcal{N}$. \end{enumerate} Note that $(\mathcal{M} \cup \bar{\mathcal{N}})/\mathcal{N} \cong \mathcal{M}/\mathcal{N}$; indeed, this diagram commutes: \begin{displaymath} \array { \mathcal{M} & \hookrightarrow & \mathcal{M} \cup \bar{\mathcal{N}} \\ \downarrow & & \downarrow \\ \mathcal{M}/\mathcal{N} & \cong & (\mathcal{M} \cup \bar{\mathcal{N}})/\mathcal{N} } \end{displaymath} Accordingly, one may skip the former modification if one intends to also perform the latter. Nevertheless, even when using $\mathcal{M}/\mathcal{N}$ as the lattice of measurable `sets', if one considers a subset $A$ of $X$ and asks whether $A$ is `measurable', one usually means whether $A \in \mathcal{M} \cup \bar{\mathcal{N}}$. One could equally well begin with a $\delta$-[[delta-filter|filter]] $\mathcal{F}$, although a $\sigma$-ideal is more traditional. Then a \textbf{[[full set]]} is any subset of $X$ that contains in an element of $\mathcal{F}$. (If we start with the $\delta$-filter $\bar{\mathcal{F}}$ in $\mathcal{P}X$, then every full set must contain a measurable full set.) In [[constructive mathematics]], full sets are more fundamental for such examples as [[Lebesgue measure]]. In any case, the modifications are as follows: \begin{enumerate}% \item We may accept the [[intersection]] of any measurable set and any full set as measurable; the collection of such sets may be denoted $\mathcal{M} \cap \bar{\mathcal{F}}$. \item We may regard two measurable sets as equivalent if their [[biconditional]] is a full set; the collection of equivalence classes is denoted $\mathcal{M}/\mathcal{F}$. \end{enumerate} Then we have this commuting diagram: \begin{displaymath} \array { \mathcal{M} & \hookrightarrow & \mathcal{M} \cap \bar{\mathcal{F}} \\ \downarrow & & \downarrow \\ \mathcal{M}/\mathcal{F} & \cong & (\mathcal{M} \cap \bar{\mathcal{F}})/\mathcal{F} } \end{displaymath} \hypertarget{abstract_measurable_sets}{}\subsection*{{Abstract measurable sets}}\label{abstract_measurable_sets} Already we have seen that we may be more interested in [[equivalence classes]] of measurable sets than in the sets themselves. We may well start with any appropriate algebra in the place of $\mathcal{M}/\mathcal{F}$ above and regard its elements are `measurable sets'. This may be done in the theory of [[measurable locales]] and other `pointless' approaches to measure theory. [[!redirects measurable set]] [[!redirects measurable sets]] [[!redirects measurable subset]] [[!redirects measurable subsets]] [[!redirects measurable subspace]] [[!redirects measurable subspaces]] [[!redirects relatively measurable subset]] [[!redirects relatively measurable subsets]] [[!redirects relatively measurable set]] [[!redirects relatively measurable sets]] [[!redirects sigma-measurable subset]] [[!redirects sigma-measurable subsets]] [[!redirects ∞-measurable subset]] [[!redirects ∞-measurable subsets]] [[!redirects sigma-measurable set]] [[!redirects sigma-measurable sets]] [[!redirects ∞-measurable set]] [[!redirects ∞-measurable sets]] \end{document}