\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{metaplectic group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DoubleCover}{Double cover $Mp$ of $Sp$}\dotfill \pageref*{DoubleCover} \linebreak \noindent\hyperlink{CircleExtension}{Circle extension $Mp^c$ of $Sp$}\dotfill \pageref*{CircleExtension} \linebreak \noindent\hyperlink{CirclExtensionMUc}{Circle extension $MU^c$ of $U$}\dotfill \pageref*{CirclExtensionMUc} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_the_metalinear_group}{Relation to the metalinear group}\dotfill \pageref*{relation_to_the_metalinear_group} \linebreak \noindent\hyperlink{NonTrivialityOfExtensions}{(Non-)Triviality of extensions}\dotfill \pageref*{NonTrivialityOfExtensions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{DoubleCover}{}\subsubsection*{{Double cover $Mp$ of $Sp$}}\label{DoubleCover} For $(V,\omega)$ a [[symplectic vector space]], the \emph{metaplectic group} $Mp(V,\omega)$ is the [[Lie group]] which is [[generalized the|the]] [[universal cover|universal]] [[double cover]] of the [[symplectic group]] $Sp(V,\omega)$. This has various more explicit presentations. One is by [[quadratic Hamiltonians]]: The metaplectic group is that subgroup of the [[quantomorphism group]] of the [[symplectic manifold]] $(V,\omega)$ whose elements are given by [[paths]] of [[Hamiltonians]] that are [[homogeneously quadratic Hamiltonians]] (due to \hyperlink{Leray81}{Leray 81, section 1.1}, see also \hyperlink{RobbinSalamon93}{Robbin-Salamon 93, sections 9-10}). (The more general subgroup given by possibly inhomogeneous [[quadratic Hamiltonians]] this way is the [[extended affine symplectic group]]. The subgroup given by linear Hamiltonians is the [[Heisenberg group]] $Heis(V,\omega)$.) \hypertarget{CircleExtension}{}\subsubsection*{{Circle extension $Mp^c$ of $Sp$}}\label{CircleExtension} There is also a nontrivial [[circle group]]-[[group extension|extension]] of the [[symplectic group]], called $Mp^c$. This is the circle extension [[associated bundle|associated]] to the plain metaplectic group $Mp$ \hyperlink{DoubleCover}{above}, via the canonical [[action]] of $\mathbb{Z}_2$ on $U(1)$ (by [[complex conjugation]]): (\hyperlink{ForgerHess79}{Forger-Hess 79 (2.4)}) \begin{displaymath} \begin{aligned} Mp^c(V,\omega) & \coloneqq Mp(V,\omega) \times_{\mathbb{Z}_2} U(1) \coloneqq ( Mp(V,\omega) \times U(1) )/\mathbb{Z}_2 \end{aligned} \end{displaymath} where the last line denotes the [[quotient group]] by the [[diagonal action]] of $\mathbb{Z}_2$. (This is in direct [[analogy]] to the group [[Spin{\tt \symbol{94}}c]] and its relation to [[Spin]].) Again, this has various more explicit presentations. The \emph{[[Segal-Shale-Weil representation]]} is the following. By the [[Stone-von Neumann theorem]] there is an essentially unique [[irreducible representation|irreducible]] [[unitary representation]] $W$ of the [[Heisenberg group]] $Heis(V,\omega)$. This being essentially unique implies that for each element $g\in Sp(V,\omega)$ of the [[symplectic group]], there is a unique [[unitary operator]] $U_g$ such that for all $v\in V$ \begin{displaymath} W(g(v)) = U_g W(v) U^{-1}_g \,. \end{displaymath} The group $Mp^c$ is the [[subgroup]] of the [[unitary group]] of all such $U_g$ for $g\in Sp(V,\omega)$. The map $U_g \mapsto g$ exhibits this as a [[group extension]] by the [[circle group]] \begin{displaymath} U(1)\longrightarrow Mp^c(V,\omega) \longrightarrow Sp(V,\omega) \,. \end{displaymath} e.g. (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, p. 19}, \hyperlink{DerezinskiGérard13}{Dereziski-G\'e{}rard 13, def. 10.24}) Alternatively, there is again a characterization by [[quadratic Hamiltonians]] (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, theorem (2.4)} \hypertarget{CirclExtensionMUc}{}\subsubsection*{{Circle extension $MU^c$ of $U$}}\label{CirclExtensionMUc} A [[symplectic vector space]] $(V,\omega)$ has a compatible [[complex structure]] $J$. Write \begin{displaymath} U(V,J) \hookrightarrow Sp(V,\omega) \end{displaymath} for the corresponding [[unitary group]]. \begin{prop} \label{MUc}\hypertarget{MUc}{} The restriction ([[pullback]]) of $Mp^c$ \hyperlink{CircleExtension}{above} to this subgroup is denoted $MU^c$ in (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, p. 22}) \begin{displaymath} \itexarray{ U(1) &=& U(1) \\ \downarrow && \downarrow \\ MU^c(V,J) &\hookrightarrow& Mp^c(V,\omega) \\ \downarrow && \downarrow \\ U(V,J) &\hookrightarrow& Sp(V,\omega) } \end{displaymath} \end{prop} (beware the notational clash with the [[Thom spectrum]] [[MU]], which is unrelated). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_the_metalinear_group}{}\subsubsection*{{Relation to the metalinear group}}\label{relation_to_the_metalinear_group} Inside the [[symplectic group]] $Sp(2n, \mathbb{R})$ in dimension $2n$ sits the [[general linear group]] in dimension $n$ \begin{displaymath} Gl(n,\mathbb{R}) \hookrightarrow Sp(2n,\mathbb{R}) \end{displaymath} as the subgroup that preserves the standard [[Lagrangian submanifold]] $\mathbb{R}^n \hookrightarrow \mathbb{R}^{2n}$. Restriction of the metaplectic [[group extension]] along this inclusion defines the [[metalinear group]] $Ml(n)$ \begin{displaymath} \itexarray{ Ml(n, \mathbb{R}) &\hookrightarrow& Mp(2n, \mathbb{R}) \\ \downarrow && \downarrow \\ Gl(n, \mathbb{R}) &\hookrightarrow& Sp(2n, \mathbb{R}) } \,. \end{displaymath} Hence a [[metaplectic structure]] on a [[symplectic manifold]] induces a [[metalinear structure]] on its [[Lagrangian submanifolds]]. \hypertarget{NonTrivialityOfExtensions}{}\subsubsection*{{(Non-)Triviality of extensions}}\label{NonTrivialityOfExtensions} \begin{prop} \label{}\hypertarget{}{} The extension \begin{displaymath} U(1)\to Mp^c(V,\omega) \to Sp(V,\omega) \end{displaymath} is nontrivial (does not give a [[split exact sequence]]). \end{prop} (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, theorem (2.8)}) \begin{prop} \label{MUcExtensionSplits}\hypertarget{MUcExtensionSplits}{} The extension \begin{displaymath} U(1)\to MU^c(V,J) \to U(V,J) \end{displaymath} is trivial (does give a [[split exact sequence]]). \end{prop} (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, theorem (2.9)}) \begin{cor} \label{SpStructureLiftsToMpcStructure}\hypertarget{SpStructureLiftsToMpcStructure}{} Every [[symplectic manifold]] admits a [[metaplectic structure]]. \end{cor} (\hyperlink{RobinsonRawnsley89}{Robinson-Rawnsley 89, theorem (6.2)}) \begin{proof} Since the [[unitary group]] $U(V,J)$ is the [[maximal compact subgroup]] of the [[symplectic group]] (see \href{maximal+compact+subgroup#ExamplesForLieGroups}{here}) every $Sp(V,\omega)$-[[principal bundle]] has a [[reduction of the structure group|reduction]] to a $U(V,J)$-principal bundle. By prop. \ref{MUcExtensionSplits} this reduction in turn lifts to a $MU^c(V,J)$-structure. By def. \ref{MUc} this induces an $Mp^c$-structure under inclusion along $MU^c \hookrightarrow Mp^c$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[metaplectic structure]] \item [[metaplectic correction (in geometric quantization)]] \item [[metaplectic representation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original references include \begin{itemize}% \item [[Andre Weil]], \emph{Sur certains groupes d'op\'e{}rateurs unitaires}, Acta Math. 111: 143--211. (1964). \item M. Kashiwara; [[Michèle Vergne]], \emph{On the Segal-Shale-Weil Representations and Harmonic Polynomials}, Inventiones mathematicae (1978) (\href{https://eudml.org/doc/142517}{EuDML}, \href{http://gdz-lucene.tc.sub.uni-goettingen.de/gcs/gcs?&&action=pdf&metsFile=PPN356556735_0044&divID=LOG_0008&pagesize=original&pdfTitlePage=http://gdz.sub.uni-goettingen.de/dms/load/pdftitle/?metsFile=PPN356556735_0044%7C&targetFileName=PPN356556735_0044_LOG_0008.pdf&}{pdf}) \item [[Michael Forger]], Harald Hess, \emph{Universal metaplectic structures and geometric quantization}, Comm. Math. Phys. Volume 64, Number 3 (1979), 269-278. (\href{https://projecteuclid.org/euclid.cmp/1103904723}{EUCLID}) \item [[Jean Leray]], \emph{Lagrangian analysis and quantum mechanics}, MIT press 1981 \href{http://www.maths.ed.ac.uk/~aar/papers/leraybook.pdf}{pdf} \end{itemize} Further discussion includes \begin{itemize}% \item P. L. Robinson, [[John Rawnsley]], \emph{The metaplectic representation, $Mp^c$-structures and geometric quantization}, 1989 \item [[Joel Robbin]], [[Dietmar Salamon]], \emph{Feynman path integrals on phase space and the metaplectic representation} Math. Z. \textbf{221} (1996), no. 2, 307--335, (\href{http://www.ams.org/mathscinet-getitem?mr=98f:58051}{MR98f:58051}, \href{http://dx.doi.org/10.1007/BF02622118}{doi}, [[RobbinSalamonMetaplectic.pdf:file]]), also in [[Dietmar Salamon]] (ed.), \emph{Symplectic Geometry}, LMS Lecture Note series 192 (1993) \item [[John Rawnsley]], \emph{On the universal covering group of the real symplectic group}, Journal of Geometry and Physics 62 (2012) 2044--2058 (\href{http://www.maths.ed.ac.uk/~aar/papers/rawnsley.pdf}{pdf}) \item [[Michel Cahen]], [[Simone Gutt]], \emph{$Spin^c$, $Mp^c$ and Symplectic Dirac Operators}, Geometric Methods in Physics Trends in Mathematics 2013, pp 13-28 (\href{http://homepages.ulb.ac.be/~sgutt/spinbiel.pdf}{pdf}) \item Jan Dereziski, Christian G\'e{}rard, \emph{Mathematics of Quantization and Quantum Fields}, Cambridge University Press, 2013 \end{itemize} [[!redirects metaplectic groups]] [[!redirects Mp]] [[!redirects Mp{\tt \symbol{94}}c]] \end{document}