\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{microbundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{microbundles}{Microbundles}\dotfill \pageref*{microbundles} \linebreak \noindent\hyperlink{morphisms_of_microbundles}{Morphisms of microbundles}\dotfill \pageref*{morphisms_of_microbundles} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{tangent_microbundle}{Tangent microbundle}\dotfill \pageref*{tangent_microbundle} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A microbundle is something like an approximation to the notion of [[vector bundle]]: a locally trivial [[bundle]] $E \to X$ of topological spaces that has a [[section]]. Indeed, as observed by Milnor, every vector bundle gives an example of a microbundle (for a modern treatment see \hyperlink{Kupers18}{Kupers18, Example 27.2.3} or Lurie's course, \href{http://www.math.harvard.edu/~lurie/937notes/937Lecture10.pdf}{Topics in Geometric Topology, Lecture 10}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{microbundles}{}\subsubsection*{{Microbundles}}\label{microbundles} A real \textbf{microbundle of dimension $n$} is a 4-tuple $\xi = (E,p,B,i)$ where \begin{itemize}% \item $E$ is a [[topological space]] (the \emph{total space} of $\xi$), \item $B$ is a topological space (the \emph{base space} of $\xi$, \item and $p:E\to B$ a continuous map (projection), \item $i:B\hookrightarrow E$ another continuous map (inclusion of base space) \end{itemize} such that \begin{itemize}% \item $i$ is a [[section]] of $p$, i.e. $p\circ i = id_B$ \item the \emph{local triviality} condition holds: for all $b\in B$, there are neighborhoods $U\ni b$ and $V\ni i(b)$ and a homeomorphism $h:U\times R^n\to V\cap p^{-1}(U)$ such that $p(h(u,v))=u$ and $h(u,0)=i(u)$ for all $u\in U$. The open subspace $i(B)$ is called the \emph{zero section} of $\xi$. \end{itemize} \hypertarget{morphisms_of_microbundles}{}\subsubsection*{{Morphisms of microbundles}}\label{morphisms_of_microbundles} A \textbf{[[morphism]] of microbundles} $\phi:\xi\to\xi'$ is a [[germ]] of maps from neighborhoods of the zero section of $\xi$ to $\xi'$, which commutes with projections and inclusions, with composition defined for representatives as composition of functions on smaller neighborhoods. In particular, an \textbf{[[isomorphism]] of microbundles} can be represented by a [[homeomorphism]] from a neighborhood $V$ of the zero section in $\xi$ to a neighborhood $V'$ of the zero section in $\xi'$ commuting with projections and inclusions of the zero sections. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{tangent_microbundle}{}\subsubsection*{{Tangent microbundle}}\label{tangent_microbundle} The main example is the \textbf{tangent microbundle} $(M\times M,p_1,M,i)$ of a topological [[manifold]] $M$ where $p_1:M\times M\to M$ is the projection onto the first factor. If $(U,f)$ is a chart of the manifold $M$ around point $x\in M$ (where $x\in U\subset M$ and $f:U\to R^n$ is a homeomorphism with $h(x)=0$) then define $h:U\times R^n\to U\times U$ by $h(u,v)=(u,f^{-1}(f(v)-u))$. If $M$ is a smooth manifold, then the tangent microbundle is equivalent to the tangent bundle (\hyperlink{Kupers18}{Kupers18, Example 27.2.3}). [[David Roberts]]: A couple of years ago I thought of importing topological groupoids to this concept for the following reason: The tangent microbundle $M\times M$, when $M$ is a manifold, is the groupoid integrating the tangent bundle $TM$ of $M$. If we have a general Lie groupoid, we can form the Lie algebroid, which is a very interesting object. If we have a topological groupoid, it seems to me that there should be a microbundle-like object that acts like the algebroid of that groupoid. This should reduce to the tangent microbundle in the case of the codiscrete groupoid = pair groupoid. Perhaps not all topological groupoids would have an associated algebroid, but those wih source and target maps that are \href{http://www.google.com.au/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fbooks.google.com.au%2Fbooks%3Fid%3DxiZgzmXVy9AC%26pg%3DPA66%26lpg%3DPA66%26dq%3Dtopological%2Bsubmersion%26source%3Dbl%26ots%3D8LFo35R79c%26sig%3Dd6GJNwpOF5BM4FX4ag2Q5jfU5UA%26hl%3Den%26ei%3Db4laSoDhOKfs6gPcxs2VCw%26sa%3DX%26oi%3Dbook_result%26ct%3Dresult%26resnum%3D1&ei=b4laSoDhOKfs6gPcxs2VCw&usg=AFQjCNEfAa7QvOXntdIikSLkvT1X9U2gjQ}{topological submersions} probably will. \hypertarget{references}{}\subsection*{{References}}\label{references} Microbundles were defined by [[John Milnor]]. The original paper can be found \href{http://www.maths.ed.ac.uk/~aar/papers/micro001.pdf}{here}. Classic treatments of their elementary theory include: \begin{itemize}% \item [[N. H. Kuiper]] and [[Richard Lashof|R. K. Lashof]], \emph{Microbundles and Bundles I. Elementary Theory}, Invent. Math., 1, (1966), 1 – 17. \item [[N. H. Kuiper]] and [[Richard Lashof|R. K. Lashof]], \emph{Microbundles and Bundles II. Semisimplicial Theory}, Invent. Math., 1, (1966), 243 – 259. \end{itemize} Useful references are for instance \begin{itemize}% \item [[Jacob Lurie]], Spring 2009, \href{http://www.math.harvard.edu/~lurie/937.html}{Topics in Geometric Topology} \item S. Buoncristiano, 2003, \href{http://www.emis.de/journals/GT/gtmcontents6.html}{Fragments of geometric topology from the sixties}. \item [[Alexander Kupers]], \emph{Lectures on diffeomorphisms groups of manifolds}, (\href{http://www.math.harvard.edu/~kupers/teaching/272x/book.pdf}{pdf}) \end{itemize} [[!redirects tangent microbundle]] \end{document}