\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{microcausal polynomial observable} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{review}{Review}\dotfill \pageref*{review} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{microcausal functionals} on the space $C^\infty(X)$ of [[smooth functions]] on a [[globally hyperbolic spacetime]] $(X,e)$ are those which come from [[compactly supported distributions]] on some [[Cartesian product]] of copies of $X$ such that the [[wave front set]] of the distributions excludes those covectors to a point in $X^n$ all whose components are in the [[closed future cone]] or all whose components are in the [[closed past cone]] These functionals underly the [[Wick algebra]] of [[free field theories]]. The condition on the wave front is such that the [[product of distributions]] with a [[Hadamard distribution]] is well defined, so that the coresponding [[Moyal star product]] is well defined, which gives the [[Wick algebra]]. At the same time the condition includes [[local observables]] and hence in particular the usual ([[adiabatic switching|adiabatically switched]]) point-[[interaction]] terms, such as of [[phi{\tt \symbol{94}}4 theory]]. [[!include perturbative observables -- table]] \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{PolynomialObservable}\hypertarget{PolynomialObservable}{} \textbf{([[polynomial observable]])} Let $E \overset{fb}{\to}$ be [[field bundle]] which is a [[vector bundle]]. An [[off-shell]] \emph{[[polynomial observable]]} is a [[smooth function]] \begin{displaymath} A \;\colon\; \Gamma_\Sigma(E) \longrightarrow \mathbb{C} \end{displaymath} on the [[on-shell]] [[space of sections]] of the [[field bundle]] $E \overset{fb}{\to} \Sigma$ (space of field histories) which may be expressed as \begin{displaymath} A(\Phi) \;=\; \alpha^{(0)} + \int_\Sigma \alpha^{(1)}_a(x) \Phi^a(x) \, dvol_\Sigma(x) + \int_\Sigma \int_\Sigma \alpha^{(2)}_{a_1 a_2}(x_1, x_2) \Phi^{a_1}(x_1) \Phi^{a_2}(x_2) \,dvol_\Sigma(x_1) \, dvol_\Sigma(x_2) + \cdots \,, \end{displaymath} where \begin{displaymath} \alpha^{(k)} \in \Gamma'_{\Sigma^k}\left((E^\ast)^{\boxtimes^k_{sym}} \right) \end{displaymath} is a [[compactly supported distribution]] [[distribution of two variables|of k variables]] on the $k$-fold graded-symmetric [[external tensor product of vector bundles]] of the [[field bundle]] with itself. Write \begin{displaymath} PolyObs(E) \hookrightarrow Obs(E) \end{displaymath} for the [[subspace]] of off-shell polynomial observables onside all off-shell [[observables]]. Let moreover $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] whose [[equations of motion]] are [[Green hyperbolic differential equations]]. Then an \emph{[[on-shell]] polynomial observable} is the [[restriction]] of an off-shell polynomial observable along the inclusion of the [[on-shell]] [[space of field histories]] $\Gamma_{\Sigma}(E)_{\delta_{EL}\mathbf{L} = 0} \hookrightarrow \Gamma_\Sigma(E)$. Write \begin{displaymath} PolyObs(E,\mathbf{L}) \hookrightarrow Obs(E,\mathbf{L}) \end{displaymath} for the subspace of all on-shell polynomial observables inside all on-shell [[observables]]. By \href{Green+hyperbolic+partial+differential+equation#DistributionsOnSolutionSpaceAreTheGeneralizedPDESolutions}{this prop.} restriction yields an [[isomorphism]] between polynomial on-shell observables and polynomial off-shell observables modulo the image of the [[differential operator]] $P$: \begin{displaymath} PolyObs(E,\mathbf{L}) \underoverset{\simeq}{\text{restriction}}{\longleftarrow} PolyObs(E)/im(P) \,. \end{displaymath} \end{defn} \begin{defn} \label{MicrocausalObservable}\hypertarget{MicrocausalObservable}{} \textbf{([[microcausal observable]])} For $\Sigma$ a [[spacetime]], hence a [[Lorentzian manifold]] with [[time orientation]], then a \emph{[[microcausal observable]]} is a [[polynomial observable]] (def. \ref{PolynomialObservable}) such that each [[coefficient]] $\alpha^{(k)}$ has [[wave front set]] excluding those points where all $k$ [[wave vectors]] are in the [[closed future cone]] or all in the [[closed past cone]]. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} \textbf{([[non-singular distribution|non-singular observables]] are [[microcausal observables|microcausal]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]]. Then a [[regular observable]], hence a [[polynomial observable]] (\href{A+first+idea+of+quantum+field+theory+--+Observables#PolynomialObservables}{this def.}) whose [[distribution|distributional]] [[coefficients]] $\alpha_{a_1 \cdots a_k}$ \eqref{RecalledForWickAlgebraExpansionOfPolynomialObservables} are [[non-singular distributions]] is a [[microcausal observable]] (def. \ref{MicrocausalFunctionals}). This is simply because the [[wave front set]] of [[non-singular distributions]] is [[empty set|empty]] (by definition, via the [[Paley-Wiener-Schwartz theorem]], \href{Schwartz+theorem#DecayPropertyOfFourierTransformOfCompactlySupportedFunctions}{this prop.}). \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{(compactly averaged point evaluations are microcausal)} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]]. Assume the [[field bundle]] $E$ is a [[trivial vector bundle]] with linear [[fiber]] coordinates $(\phi^a)$. Let $g \in C^\infty_c(X)$ be a [[bump function]], then for $n \in \mathbb{N}$ the polynomial observables (\href{A+first+idea+of+quantum+field+theory+--+Observables#PolynomialObservables}{this def.}) of the form \begin{displaymath} \itexarray{ \Gamma_\Sigma(E) &\overset{}{\longrightarrow}& \mathbb{C} \\ \Phi &\mapsto& \int_X g(x) \tilde \alpha_{a_1 \cdots a_k}(x) \Phi^{a_1}(x) \cdots \Phi^(a_k)\, dvol_\Sigma(x) } \end{displaymath} are [[microcausal observable|microcausal]] (def. \ref{MicrocausalFunctionals}). If here we think of $\phi(x)^n$ as a point-[[interaction]] term (as for instance in [[phi{\tt \symbol{94}}4 theory]]) then $g$ is to be thought of as an ``[[adiabatic switching|adiabatically switched]]'' [[coupling constant]]. These are the relevant [[interaction terms]] to be quantized via [[causal perturbation theory]]. \end{example} \begin{proof} For notational convenience, consider the case of the [[scalar field]] with $k = 2$; the general case is directly analogous. Then the [[local observable]] coming from $\phi^2$ (a [[phi{\tt \symbol{94}}n interaction]]-term), has, regarded as a [[polynomial observable]], the [[delta distribution]] $\delta(x_1-x_2)$ as [[coefficient]] in degree 2: \begin{displaymath} \begin{aligned} A(\Phi) & = \underset{\Sigma}{\int} g(x) (\Phi(x))^2 \,dvol_\Sigma(x) \\ & = \underset{\Sigma \times \Sigma}{\int} \underset{ = \alpha^{(2)}}{ \underbrace{ g(x_1) \delta(x_1 - x_2) }} \, \Phi(x_1) \Phi(x_2) \, dvol_\Sigma(x_1) \, dvol_\Sigma(x_2) \end{aligned} \,. \end{displaymath} Now for $(x_1, x_2) \in \Sigma \times \Sigma$ and $\mathbb{R}^{2n} \simeq U \subset X \times X$ a [[chart]] around this point, the [[Fourier transform of distributions]] of $g \cdot \delta(-,-)$ restricted to this chart is proportional to the Fourier transform $\hat g$ of $g$ evaluated at the sum of the two covectors: \begin{displaymath} \begin{aligned} (k_1, k_2) & \mapsto \underset{\mathbb{R}^{2n}}{\int} g(x_1) \delta(x_1, x_2) e^{i (k_1 \cdot x_1 + k_2 \cdot x_2 )} \, dvol_\Sigma(x_1) \, dvol_\Sigma(x_2) \\ & \propto \hat g(k_1 + k_2) \end{aligned} \,. \end{displaymath} Since $g$ is a plain [[bump function]], its [[Fourier transform]] $\hat g$ is quickly decaying (according to \href{compactly+supported+distribution#eq:DecayEstimateForFourierTransformOfNonSingularDistribution}{this inequality}) along $k_1 + k_2$ (\href{wavefront+set#EmptyWaveFronSetCorrespondsToOrdinaryFunction}{this prop.}), as long as $k_1 + k_2 \neq 0$. Only on the cone $k_1 + k_2 = 0$ the Fourier transform is constant, and hence in particular not decaying. This means that the wave front set consists of the elements of the form $(x, (k, -k))$ with $k \neq 0$. Since $k$ and $-k$ are both in the [[closed future cone]] or both in the [[closed past cone]] precisely if $k = 0$, this situation is excluded in the wave front set and hence the distribution $g \cdot \delta(-,-)$ is [[microcausal observable|microcausal]]. \begin{quote}% (graphics grabbed from \hyperlink{KhavkineMoretti14}{Khavkine-Moretti 14, p. 45}) \end{quote} \end{proof} This shows that microcausality in this case is related to conservation of momentum in the point interaction. More generally: \begin{example} \label{CompactlySupportedPolynomialLocalDensities}\hypertarget{CompactlySupportedPolynomialLocalDensities}{} \textbf{(polynomial [[local observables]] are microcausal)} Write \begin{displaymath} \Omega_{poly}^{h,v}(E) \end{displaymath} for the space of differential forms on the [[jet bundle]] of the [[field bundle]] $E$ which locally are [[polynomials]] in the field variables. \begin{displaymath} \mathcal{F}_{loc} \; \subset \; C^\infty_c(\Sigma) \underset{\Omega_{poly}^{0,0}(E)}{\otimes} \Omega_{poly}^{d,0}(E) \end{displaymath} for the subspace of [[horizontal differential forms]] of degree $d$ on the [[jet bundle]] ([[local Lagrangian densities]]) of those which are [[compact support|compactly supported]] with respect to $\Sigma$ ([[local observables]]) and [[polynomial]] with respect to the field variables. Every $L \in \mathcal{F}_{loc}$ induces a functional \begin{displaymath} \Gamma_\Sigma(E) \longrightarrow \mathbb{R} \end{displaymath} by [[integration of differential forms|integration]] of the [[pullback of differential forms|pullback]] of $L$ along the [[jet prolongation]] of a given [[section]]: \begin{displaymath} \phi \mapsto \int_{\Sigma} j^\infty(\phi)^\ast L \,. \end{displaymath} These functionals happen to be [[microcausal functional|microcausal]], so that there is an inclusion \begin{displaymath} \mathcal{F}_{loc} \hookrightarrow \mathcal{F}_{mc} \end{displaymath} into the space of microcausal functionals (e.g. \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, p. 21}). In fact this is a [[dense subspace]] inclusion (e.g. \hyperlink{FredenhagenRejzner12}{Fredenhagen-Rejzner 12, p. 23}) \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} Write $\mathcal{F}_{reg} \subset \mathcal{F}_{mc}$ for that subalgebra of the algebra of microcausal functionals whose [[coefficients]] are [[non-singular distributions]]. Let \begin{displaymath} \langle -\rangle \;\colon\; \mathcal{F}_{reg} \longrightarrow \mathbb{C} \end{displaymath} be a [[state on a star-algebra|state]] on regular observables which is [[quasi-free Hadamard state|quasi-free Hadamard]]. Then this uniquely [[extensions|extends]] to a state on microcausal functionsal \begin{displaymath} \itexarray{ \mathcal{F}_{reg} &\overset{\langle -\rangle}{\longrightarrow}& \mathbb{C} \\ \downarrow & \nearrow_{\mathrlap{\exists ! \langle -\rangle}} \\ \mathcal{F}_{mc} } \end{displaymath} \end{prop} (\hyperlink{HollandRuan01}{Hollands-Ruan 01, remark 1 on p. 12}, implied by \hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00}, \hyperlink{HollandsWald01}{Hollands-Wald 01}, a special case of \hyperlink{HollandRuan01}{Hollands-Ruan 01, theorem III.1 (ii)}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Wick algebra]] \item [[time-ordered products]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661, 2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion}, Commun.Math.Phys. 219 (2001) 5-30 (\href{https://arxiv.org/abs/hep-th/0001129}{arXiv:hep-th/0001129}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{Local Wick polynomials and time ordered products of quantum fields in curved spacetime}, Commun. Math. Phys., Commun.Math.Phys.223:289-326,2001 (\href{https://arxiv.org/abs/gr-qc/0103074}{arXiv:gr-qc/0103074}) \item [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative algebraic field theory, and deformation quantization}, in [[Roberto Longo]] (ed.), \emph{Mathematical Physics in Mathematics and Physics, Quantum and Operator Algebraic Aspects}, volume 30 of Fields Institute Communications, pages 151--160. American Mathematical Society, 2001 (\href{https://arxiv.org/abs/hep-th/0101079}{arXiv:hep-th/0101079}) \item [[Stefan Hollands]], Weihua Ruan, \emph{The State Space of Perturbative Quantum Field Theory in Curved Spacetimes}, Annales Henri Poincare 3 (2002) 635-657 (\href{https://arxiv.org/abs/gr-qc/0108032}{arXiv:gr-qc/0108032}) \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], [[Pedro Lauridsen Ribeiro]], section 4.1 of \emph{Algebraic Structure of Classical Field Theory: Kinematics and Linearized Dynamics for Real Scalar Fields} (\href{https://arxiv.org/abs/1209.2148}{arXiv:1209.2148}) \end{itemize} \hypertarget{review}{}\subsubsection*{{Review}}\label{review} \begin{itemize}% \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], \emph{Perturbative algebraic quantum field theory}, In \emph{Mathematical Aspects of Quantum Field Theories}, Springer 2016 (\href{https://arxiv.org/abs/1208.1428}{arXiv:1208.1428}) \item [[Igor Khavkine]], [[Valter Moretti]], \emph{Algebraic QFT in Curved Spacetime and quasifree Hadamard states: an introduction}, Chapter 5 in [[Romeo Brunetti]] et al. (eds.) \emph{Advances in Algebraic Quantum Field Theory}, Springer, 2015 (\href{https://arxiv.org/abs/1412.5945}{arXiv:1412.5945}) \item [[Katarzyna Rejzner]], section 4.4.1 of \emph{Perturbative Algebraic Quantum Field Theory}, Mathematical Physics Studies, Springer 2016 (\href{https://link.springer.com/book/10.1007%2F978-3-319-25901-7}{web}) \item [[Michael Dütsch]], def. 1.2 and equation (2.47) in \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} [[!redirects microcausal polynomial observables]] [[!redirects microcausal observable]] [[!redirects microcausal observables]] [[!redirects microcausal functional]] [[!redirects microcausal functionals]] \end{document}