\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{minimal dg-module} [[!redirects KS-model]] [[!redirects minimal KS-extension]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{rational_homotopy_theory}{}\paragraph*{{Rational homotopy theory}}\label{rational_homotopy_theory} [[!include differential graded objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{minimal dg-module} (\hyperlink{Roig92}{Roig 92}, \hyperlink{Roig94}{Roig 94, section 1}) is a [[minimal model]] in the context of the [[homotopy theory]] of [[dg-modules]]. Hence over [[dgc-algebras]] in non-positve degree, minimal dg-modules are the analogue of [[minimal Sullivan model]] as one passes from [[dg-algebras]] to (just) [[dg-modules]]. Minimal KS-extensions hence play the role of formal duals of [[minimal fibration]] in some applications of [[rational homotopy theory]]. (In \hyperlink{Halperin83}{Halperin 83} it has ``Koszul-Sullivan extensions'' for [[relative Sullivan algebras]], and ``KS'' in ``KS-models'' refers to that usage.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Throughout, let $A$ be a [[dg-algebra]]. Eventually this is thought of as being a [[Sullivan model]] for the [[rationalization]] of the [[quotient]] of a [[topological space]] by a circle action. We take all [[differentials]] to have degree +1. For $V$ a [[vector space]] and $n$ a [[natural number]], we write $V[n]$ for the [[chain complex]] concentrated on $V$ in degree $n$. \begin{defn} \label{HirschExtension}\hypertarget{HirschExtension}{} \textbf{(Hirsch extension of dg-modules)} Let $N$ be a [[dg-module]] over $A$ and let $n \in \mathbb{N}$ be a [[natural number]]. Then a degree $n$ \textbf{[[Hirsch extension]]} of $N$ is a [[monomorphisms]] of [[dg-modules]] of the form \begin{displaymath} N \hookrightarrow (N \oplus (A \otimes V[n]), d_{\phi}) \end{displaymath} given by a choice of \begin{enumerate}% \item a [[vector space]] $V$ \item a [[linear map]] $d_V \;\colon\; V \to N_{n+1}$ \end{enumerate} where the differential $d_{\phi}$ is $d_N$ on $N$, is $d_A$ on $A$, and is given on $V$ by $\phi$ followed by the [[action]] $\rho$ of $A$ on $V$: \begin{displaymath} d_\phi (a \otimes v) = (d_A a) \otimes v + (-1)^{\vert a \vert} \rho(a,\phi(v)) \,. \end{displaymath} \end{defn} (\hyperlink{Roig94}{Roig 94, def. 1.8}) \begin{remark} \label{}\hypertarget{}{} It follows that for $N_1, N_2$ two $A$-[[dg-modules]] then homomorphisms $f$ out of a Hirsch extension of the former (def. \ref{HirschExtension}) \begin{displaymath} f \;\colon\; (N_1 \olpus (A \otimes V[n]), d_\phi) \longrightarrow N_2 \end{displaymath} is equivalently \begin{enumerate}% \item a homomorphism of dg-modules $h \colon N_1 \to N_2$; \item a [[linear map]] $g \colon V \to (N_2)_{n}$ \end{enumerate} such that \begin{itemize}% \item $h \circ d_{\phi} = d_{N_2} \circ g$. \end{itemize} \end{remark} The following defines a kind of [[minimal cofibrations]] of dg-modules. \begin{defn} \label{KSFactorization}\hypertarget{KSFactorization}{} \textbf{(minimal KS-extension)} For $N$ a [[dg-module]] over $A$, then a \textbf{[[minimal KS-extension]]} of $N$ is a certain [[transfinite composition]] of Hirsch extensions, namely a [[monomorphism]] \begin{displaymath} N \hookrightarrow \hat N \end{displaymath} equipped with an [[exhaustive filtration]] $\{\hat N(n,q)\}_{n,q \in \mathbb{N}}$ such that: \begin{enumerate}% \item $\hat N(0,0) \simeq N$; \item the inclusions $\hat N(n,q) \hookrightarrow \hat N(n,q+1)$ are Hirsch extensions (def. \ref{HirschExtension}). \item $N(n+1,0) = \underset{\longrightarrow}{\lim}_q \hat N(n,q)$ ([[colimit]] over the sequence of Hirsch extensions in the previous degree). \end{enumerate} Accordingly, a \textbf{minimal KS-factorization} of a morphism $N_1 \to N_2$ of $A$-dg-modules is a factorization as a minimal KS-extension followed by a [[quasi-isomorphism]] \begin{displaymath} \itexarray{ N _1 && \longrightarrow && N_2 \\ & {}_{\mathllap{\text{minimal} \atop \text{KS-extension}}}\searrow && \nearrow_{\mathrlap{\text{quasi-iso}}} \\ && N_1 \oplus (A \otimes V) } \,. \end{displaymath} Finally a \textbf{minimal KS-model} is a [[dg-module]] $N$ such that $0 \hookrightarrow N$ is a minimal KS-fibration. \end{defn} (\hyperlink{Roig94}{Roig 94, def. 1.9}) \begin{prop} \label{}\hypertarget{}{} Let the [[ground field]] be of [[characteristic zero]]. Let $f \colon N_1 \longrightarrow N_2$ be a morphism of $A$-[[dg-modules]] such that it induces a [[monomorphism]] in degree-0 [[cochain cohomology]], $H^0(f) \colon H^0(N_1) \hookrightarrow H^0(N_2)$ then it admits a minimal KS-factorization (def. \ref{KSFactorization}). In particular, every [[dg-module]] has a minimal KS-model (def. \ref{KSFactorization}). \end{prop} \hyperlink{RoigSaralegiAranguren00}{Roig \& Saralegi-Aranguren 00, theorem 1.3.1} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item \href{4-sphere#CircleAction}{4-sphere -- circle action} \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[circle action]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item [[Agustí Roig]], \emph{Alguns punts d'\`a{}lgebra homot\`o{}pica}, Barcelona (1992) \item [[Agustí Roig]], \emph{Minimal resolutions and other minimal models}, Publicacions Matem\`a{}tiques (1993) Volume: 37, Issue: 2, page 285-303 (\href{https://eudml.org/doc/41535}{web}) \item [[Agustí Roig]], \emph{Formalizability of dg modules and morphisms of cdg algebras}, Volume 38, Issue 3 (1994), 434-451 (\href{http://projecteuclid.org/euclid.ijm/1255986724}{euclid}) \item [[Igor Kriz]], [[Peter May]], section IV.3 of \emph{Operads, Algebras, Modules and Motives}, 1994 (\href{http://www.math.uchicago.edu/~may/PAPERS/kmbooklatex.pdf}{pdf}) \item [[Agustí Roig]], [[Martintxo Saralegi-Aranguren]], \emph{Minimal Models for Non-Free Circle Actions}, Illinois Journal of Mathematics, volume 44, number 4 (2000) (\href{https://arxiv.org/abs/math/0004141}{arXiv:math/0004141}) \end{itemize} See also \begin{itemize}% \item [[Steve Halperin]], \emph{Lectures on minimal models}, Mem. Soc. Math. Franc. no 9/10 (1983) (\href{https://eudml.org/doc/94833}{web}) \item [[Flavio da Silveira]], \emph{Rational homotopy theory of fibrations}, Pacific Journal of Mathematics, Vol. 113, No. 1 (1984) (\href{http://msp.org/pjm/1984/113-1/pjm-v113-n1-p01-s.pdf}{pdf}) \end{itemize} [[!redirects minimal dg-modules]] [[!redirects Hirsch extension]] [[!redirects Hirsch extensions]] [[!redirects minimal Hirsch cofibration]] [[!redirects minimal Hirsch cofibrations]] [[!redirects minimal KS-extension]] [[!redirects minimal KS-extensions]] [[!redirects minimal KS-model]] [[!redirects minimal KS-models]] \end{document}