\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{mirror symmetry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_tropical_geometry}{Relation to tropical geometry.}\dotfill \pageref*{relation_to_tropical_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{CompleteProofs}{Complete proofs}\dotfill \pageref*{CompleteProofs} \linebreak \noindent\hyperlink{computation_via_topological_recursion}{Computation via topological recursion}\dotfill \pageref*{computation_via_topological_recursion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} To every complex 3-dimensional [[Calabi-Yau variety]] $X$ are associated two similar but differing types of [[sigma-model]] $N=2$-supersymmetric [[2d CFTs]]. There is at least for some CY $X$ a map $X \mapsto \hat X$ which exchanges the [[Hodge numbers]] $h^{1,1}$ and $h^{1,2}$ such that $SCFT_A(X)$ is expected to be equivalent to $SCFT_B(\hat X)$. \begin{displaymath} SCFT_A(X) \simeq SCFT_B(\hat X) \,. \end{displaymath} This is called \emph{mirror symmetry}. At least in some cases this can be understood as a special case of [[T-duality]] (\hyperlink{StromingerYauZaslow96}{Strominger-Yau-Zaslow 96}). In this form mirror symmetry remains a conjecture, not the least because for the moment there is no complete construction of these SCFTs. But to every such $SCFT(X)$ one can associate two [[TCFT]]s, $A(X)$ and $B(X)$, the [[A-model]] and the [[B-model]]. These $N=1$ supersymmetric field theories were obtained by [[Edward Witten]] using a ``topological twist''. The topological A-model can be expressed in terms of [[symplectic geometry]] of a variety and the topological B-model can be expressed in terms of the [[algebraic geometry]] of a variety. These topological theories are easier to understand and do retain a little bit of the information encoded in the full SCFTs. In terms of these the statement of mirror symmetry says that passing to mirror CYs \emph{exchanges} the A-model with the $B$-model and conversely: \begin{displaymath} A(X) \simeq B(\hat X),\,\,\,\,\,\,\,B(X)\simeq A(\hat X) \,. \end{displaymath} By a version of the [[cobordism hypothesis]]-theorem, these [[TCFT]]s (see there) are encoded by [[A-∞ categories]] that are [[Calabi-Yau categories]]: the [[A-model]] by the [[Fukaya category]] $Fuk(X)$ of $X$ which can be understood as a [[stable (∞,1)-category]] representing the Lagrangian intersection theory on the underlying [[symplectic manifold]]; and the [[B-model]] by an [[enhanced triangulated category|enhancement]] of the [[derived category]] of [[coherent sheaves]] $D^b_\infty(\hat X)$ on $\hat X$. In terms of this data, mirror symmetry is the assertion that these [[A-∞ categories]] are equivalent and simultaneously the same under exchange $X\leftrightarrow \hat{X}$: \begin{displaymath} Fuk(X) \simeq D^b_\infty(\hat{X}), \,\,\,\, and \,\,\,\, Fuk(\hat{X}) \simeq D^b_\infty(X). \end{displaymath} This categorical formulation was introduced by [[Maxim Kontsevich]] in 1994 under the name \textbf{homological mirror symmetry}. The equivalence of the categorical expression of mirror symmetry to the SCFT formulation has been proven by [[Maxim Kontsevich]] and independently by [[Kevin Costello]], who showed how the datum of a topological conformal field theory is equivalent to the datum of a [[Calabi-Yau category|Calabi-Yau A-∞-category]](see [[TCFT]]). The mirror symmetry conjecture roughly claims that every Calabi-Yau 3-fold has a mirror. In fact one considers (mirror symmetry for) degenerating families for Calabi-Yau 3-folds in large volume limit (which may be expressed precisely via the Gromov-Hausdorff metric). The appropriate definition of (an appropriate version of) the [[Fukaya category]] of a symplectic manifold is difficult to achieve in desired generality. Invariants/tools of Fukaya category include symplectic [[Floer homology]] and Gromov-Witten invariants (building up the [[quantum cohomology]]). Mirror symmetry is related to the [[T-duality]] on each fiber of an associated Lagrangian fibration \hyperlink{StromingerYauZaslow96}{Strominger-Yau-Zaslow 96}. Although the non-Calabi-Yau case may be of lesser interest to physics, one can still formulate some mirror symmetry statements for, for instance, Fano manifolds. The mirror to a Fano manifold is a Landau-Ginzburg model (see \hyperlink{HoriVafa00}{Hori-Vafa 00}; see also work of Auroux for an explanation via the Strominger-Yau-Zaslow T-duality philosophy). Then the statements are: the A-model of the Fano (given by the Fukaya category) is equivalent to the B-model of the Landau-Ginzburg model (given by the category of matrix factorizations); and the B-model of the Fano (given by the derived category of sheaves) is equivalent to the A-model of the Landau-Ginzburg model (given by the Fukaya-Seidel category). A few of the relevant names: Kontsevich, Hori-Vafa, Auroux, Katzarkov, Orlov, Seidel, \ldots{} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_tropical_geometry}{}\subsubsection*{{Relation to tropical geometry.}}\label{relation_to_tropical_geometry} Close relation to [[tropical geometry]], see e.g. \hyperlink{Gross11}{Gross 11}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[moduli space of Calabi-Yau spaces]] \item [[3d mirror symmetry]] \item [[duality in physics]], [[duality in string theory]] \item [[geometric Langlands duality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original statement of the homological mirror symmetry conjecture is in \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Homological algebra of mirror symmetry}, Proc. ICM Z\"u{}rich 1994, \href{http://arxiv.org/abs/alg-geom/9411018}{alg-geom/9411018} \end{itemize} See also \begin{itemize}% \item [[Paul Aspinwall]], [[Brian Greene]], [[David Morrison]], \emph{Calabi-Yau Moduli Space, Mirror Manifolds and Spacetime Topology Change in String Theory}, Nucl.Phys. B416 (1994) 414-480 (\href{http://arxiv.org/abs/hep-th/9309097}{arXiv:hep-th/9309097}) \end{itemize} Review contains \begin{itemize}% \item [[Kentaro Hori]], [[Cumrun Vafa]], \emph{Mirror Symmetry} (\href{https://arxiv.org/abs/hep-th/0002222}{arXiv:hep-th/0002222}) \item M. Ballard, \emph{Meet homological mirror symmetry} (\href{http://arxiv.org/abs/0801.2014}{arxiv:0801.2014}) \item A. Port, \emph{An Introduction to Homological Mirror Symmetry and the Case of Elliptic Curves} (\href{http://arxiv.org/abs/1501.00730}{arXiv:1501.00730}) \item [[Luis Ibáñez]], [[Angel Uranga]], section 10.1.2 of \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 \end{itemize} Discussion amplifying the role of [[category theory]], and [[higher geometry]] is in \begin{itemize}% \item [[Eric Sharpe]], \emph{Categorical Equivalence and the Renormalization Group}, Proceedings of LMS/EPSRC Symposium \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory}}, Fortschritte der Physik 2019 (\href{https://arxiv.org/abs/1903.02880}{arXiv:1903.02880}) \end{itemize} Other reviews include \begin{itemize}% \item [[Paul Aspinwall]], [[Tom Bridgeland]], [[Alastair Craw]], [[Michael Douglas]], Mark Gross, [[Anton Kapustin]], [[Gregory Moore]], [[Graeme Segal]], [[Balázs Szendrői]], P. Wilson, \emph{Dirichlet branes and mirror symmetry}, Clay Mathematics Monograph Volume 4, Amer. Math. Soc. Clay Math. Institute 2009 (\href{http://www.claymath.org/library/monographs/cmim04c.pdf}{pdf}, \href{http://www2.maths.ox.ac.uk/cmi/library/monographs/cmim04.pdf}{pdf}) (very readable!) \end{itemize} The relation to [[T-duality]] was established in \begin{itemize}% \item [[Andrew Strominger]], [[Shing-Tung Yau]], [[Eric Zaslow]], \emph{Mirror Symmetry is T-Duality}, Nucl.Phys.B479:243-259,1996 (DOI 10.1016/0550-3213(96)00434-8) \href{http://arxiv.org/abs/hep-th/9606040}{hep-th/9606040} \end{itemize} Further references include \begin{itemize}% \item [[Cumrun Vafa]], [[Shing-Tung Yau]] (eds.), \emph{Winter school on mirror symmetry, vector bundles, and Lagrangian submanifolds}, Harvard 1999, AMS, Intern. Press (includes A. Strominger, S-T. Yau, E. Zaslow, \emph{Mirror symmetry is $T$-duality} as pages 333--347; ). \item K. Hori, S. Katz, A. Klemm et al. \emph{Mirror symmetry I}, AMS, Clay Math. Institute 2003. \item Paul Seidel, \emph{Fukaya categories and Picard-Lefschetz theory}, Zurich Lectures in Advanced Mathematics. European Mathematical Society, Z\"u{}rich, 2008. viii+326 pp \item Mark Gross, Bernd Siebert, \emph{Mirror symmetry via logarithmic degeneration data I}, \href{http://arxiv.org/abs/math/0309070}{math.AG/0309070}, \emph{From real affine geometry to complex geometry}, \href{http://arxiv.org/abs/math/0703822}{math.AG/0703822}, \emph{Mirror symmetry via logarithmic degeneration data II}, \href{http://arxiv.org/abs/0709.2290}{arxiv/0709.2290} \item [[Anton Kapustin]], [[Dmitri Orlov]], \emph{Lectures on mirror symmetry, derived categories, and D-branes}, Uspehi Mat. Nauk \textbf{59} (2004), no. 5(359), 101--134; translation in Russian Math. Surveys \textbf{59} (2004), no. 5, 907--940, \href{http://arxiv.org/abs/math/0308173}{math.AG/0308173} \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Homological mirror symmetry and torus fibrations}, \href{http://arxiv.org/abs/math/0011041}{math.SG/0011041} \item Yong-Geun Oh, Kenji Fukaya, \emph{Floer homology in symplectic geometry and mirror symmetry}, Proc. ICM 2006, \href{http://www.math.wisc.edu/~oh/Oh-icm2006.pdf}{pdf} \item wikipedia: \href{http://en.wikipedia.org/wiki/Mirror_symmetry_%28string_theory%29}{mirror symmetry (string theory)}, \href{http://en.wikipedia.org/wiki/Homological_mirror_symmetry}{homological mirror symmetry} \item partial notes from Miami 08 workshop: \href{http://www-math.mit.edu/~auroux/frg/miami08-notes}{miami08-notes} and abstracts from \href{http://www-math.mit.edu/~auroux/frg/miami09-abstracts.html}{miami09}, \href{http://www-math.mit.edu/~auroux/frg/miami10-abstracts.html}{miami10} \item [[Mark Gross]], \emph{Tropical geometry and mirror symmetry}, CBMS regional conf. ser. 114 (2011), based on the CBMS course in Kansas, \href{http://www.ams.org/bookstore-getitem/item=CBMS-114}{AMS book page}, \href{http://www.math.ucsd.edu/~mgross/kansas.pdf}{pdf} \end{itemize} Discussion in the context of [[derived Morita equivalence]] includes \begin{itemize}% \item So Okada, \emph{Homological mirror symmetry of Fermat polynomials} (\href{http://arxiv.org/abs/0910.2014}{arXiv:0910.2014}) \end{itemize} \hypertarget{CompleteProofs}{}\subsubsection*{{Complete proofs}}\label{CompleteProofs} Here is a list with references that give complete proofs of \emph{homological} mirror symmetry on certain (types of) spaces. \begin{itemize}% \item M. Abouzaid, I. Smith, \emph{Homological mirror symmetry for the four-torus}, Duke Math. J. 152 (2010), 373--440, \href{http://arxiv.org/abs/0903.3065}{arXiv:0903.3065} \item A. Polishchuk and E. Zaslow, \emph{Categorical mirror symmetry: the elliptic curve}, Adv. Theor. Math. Phys. 2:443470, 1998. \item V. Golyshev, V. Lunts, D. Orlov, \emph{Mirror symmetry for abelian varieties}, J. Alg. Geom. \textbf{10} (2001), no. 3, 433--496, \href{http://arxiv.org/abs/math/9812003}{math.AG/9812003} \item P. Seidel, \emph{Homological mirror symmetry for the quartic surface}, \href{http://arxiv.org/abs/math/0310414}{arXiv:0310414} \item Alexander I. Efimov, \emph{Homological mirror symmetry for curves of higher genus}, Inventiones Math. \textbf{166} (2006), 537--582, \href{http://arxiv.org/abs/0907.3903}{arXiv:0907.3903} \item [[D. Auroux]], [[L. Katzarkov]], [[D. Orlov]], \emph{Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves}, \href{}{}; \emph{Mirror symmetry for weighted projective planes and their noncommutative deformations}, Ann. Math. \textbf{167} (2008), 867--943, \href{http://arxiv.org/abs/math/0404281}{math.AG/0404281} \item [[Mohammed Abouzaid]], Denis Auroux, Alexander I. Efimov, Ludmil Katzarkov, Dmitri Orlov, \emph{Homological mirror symmetry for punctured spheres}, \href{http://arxiv.org/abs/1103.4322}{arxiv/1103.4322} \item [[Paul Seidel]], \emph{Homological mirror symmetry for the genus two curve}, J. Algebraic Geometry, to appear, \href{http://arxiv.org/abs/0812.1171}{arXiv:0812.1171} \end{itemize} \hypertarget{computation_via_topological_recursion}{}\subsubsection*{{Computation via topological recursion}}\label{computation_via_topological_recursion} Computation via [[topological recursion]] in [[matrix models]] and all-[[genus of a surface|genus]] proofs of mirror symmetry is due to \begin{itemize}% \item [[Vincent Bouchard]], [[Albrecht Klemm]], [[Marcos Marino]], [[Sara Pasquetti]], \emph{Remodeling the B-model}, Commun.Math.Phys.287:117-178, 2009 (\href{https://arxiv.org/abs/0709.1453}{arXiv:0709.1453}) \item [[Bertrand Eynard]], [[Amir-Kian Kashani-Poor]], Olivier Marchal, \emph{A matrix model for the topological string I: Deriving the matrix model} (\href{https://arxiv.org/abs/1003.1737}{arXiv:1003.1737}) \item [[Bertrand Eynard]], [[Amir-Kian Kashani-Poor]], Olivier Marchal, \emph{A matrix model for the topological string II: The spectral curve and mirror geometry} (\href{https://arxiv.org/abs/1007.2194}{arXiv:1007.2194}) \item [[Bertrand Eynard]], [[Nicolas Orantin]], \emph{Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture} (\href{https://arxiv.org/abs/1205.1103}{arXiv:1205.1103}) \item Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, \emph{All Genus Open-Closed Mirror Symmetry for Affine Toric Calabi-Yau 3-Orbifolds} (\href{https://arxiv.org/abs/1310.4818}{arXiv:1310.4818}) \end{itemize} [[!redirects homological mirror symmetry]] \end{document}