\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure for Segal operads} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{segal_operads}{Segal operads}\dotfill \pageref*{segal_operads} \linebreak \noindent\hyperlink{special_morphisms}{Special morphisms}\dotfill \pageref*{special_morphisms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{of_the_various_classes_of_morphisms}{Of the various classes of morphisms}\dotfill \pageref*{of_the_various_classes_of_morphisms} \linebreak \noindent\hyperlink{of_the_model_structure_itself}{Of the model structure itself}\dotfill \pageref*{of_the_model_structure_itself} \linebreak \noindent\hyperlink{relation_to_other_model_structures}{Relation to other model structures}\dotfill \pageref*{relation_to_other_model_structures} \linebreak \noindent\hyperlink{to_dendroidal_complete_segal_spaces}{To dendroidal complete Segal spaces}\dotfill \pageref*{to_dendroidal_complete_segal_spaces} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{model structure for Segal operads} is a [[presentable (∞,1)-category|presentation]] of the [[(∞,1)-category]] of [[(∞,1)-operads]] regarding these as [[enriched (∞,1)-category|∞Grpd-enriched]] [[operads]]. It is the [[operad|operadic]] analog of the \emph{[[model structure for Segal categories]]}: its [[fibrant objects]] are operadic analogs of [[Segal categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Write $\Omega$ for the [[tree category]], the [[site]] for [[dendroidal sets]]. \hypertarget{segal_operads}{}\subsubsection*{{Segal operads}}\label{segal_operads} Write $\eta$ for the tree with a single edge and no vertices. Write \begin{displaymath} sdSet := [\Omega^{op}, sSet] \end{displaymath} for the category of [[simplicial presheaves]] on the tree category -- \emph{simplicial dendroidal sets} or \emph{dendroidal simplicial sets} (see [[model structure for complete dendroidal Segal spaces]] for more on this). \begin{defn} \label{InclusionOfSegalPreOperads}\hypertarget{InclusionOfSegalPreOperads}{} A \textbf{Segal pre-operad} $X \in [\Omega^{op}, sSet]$ is a simplicial dendroidal set such that $X(\eta)$ is a [[discrete object|discrete]] [[simplicial set]] (a plain set regarded as a simplicially constant simplicial set). Write \begin{displaymath} SegalPreOperad \hookrightarrow [\Omega^{op}, sSet] \end{displaymath} for the [[full subcategory]] on the Segal pre-operads. A \textbf{Segal operad} is a Segal pre-operad such that for every [[tree]] $T \in \Omega$ the [[powering]] \begin{displaymath} X^{\Omega[T]} \to X^{Sp(T)} \in sSet \end{displaymath} of the [[spine]] inclusion $(Sp(T) \hookrightarrow T) \in$ [[dendroidal set|dSet]] into $X$ is an [[weak equivalence|acyclic]] [[Kan fibration]]. Write \begin{displaymath} SegalOperad \hookrightarrow SegalPreOperad \end{displaymath} for the [[full subcategory]] on the Segal operads. A \textbf{Reedy-fibrant Segal operad} is a Segal operad which is moreover fibrant in the [[generalized Reedy model structure]] $[\Omega^{op}, sSet]_{gReedy}$. \end{defn} This is (\hyperlink{CisinskiMoerdijk}{Cisinski-Moerdijk, def. 7.1, def. 8.1}). \begin{remark} \label{}\hypertarget{}{} The definition of Segal pre-operads encodes a [[set]] of colors of an [[operad]], together with for each [[tree]] $T$ an [[∞-groupoid]] of operations in the operad of the shape of this tree --- notably $\infty$-groupoids of $n$-ary operations if the tree is the $n$-corolla, $T = C_n$. The condition on Segal operads encodes the existence of \emph{composition} of these operad operations by [[∞-anafunctors]]. See the discussion at \emph{[[Segal category]]} for more on this. The Reedy fibrancy condition is mostly a technical convenience. \end{remark} \begin{prop} \label{}\hypertarget{}{} The inclusion def. \ref{InclusionOfSegalPreOperads} has a [[left adjoint|left]] and [[right adjoint|right]] [[adjoint functors]] \begin{displaymath} sdSet \stackrel{\overset{\gamma_!}{\to}}{\stackrel{\overset{\gamma^*}{\leftarrow}}{\underset{\gamma_*}{\to}}} SegalPreOperad \,. \end{displaymath} \end{prop} \begin{proof} One way to see the existence of the adjoints is to note that $SegalPreOperad$ is a [[category of presheaves]] over the [[site]] $S(\Omega)$ which is the [[localization]] of $\Omega \times \Delta$ at morphisms of the form $(-,Id_\eta)$, where $\eta$ is the tree with one edge and no vertex. Write \begin{displaymath} \gamma : \Delta \times \Omega \to S(\Omega) \end{displaymath} for the [[localization]] functor, then the inclusion of Segal pre-operads is the precomposition with this functor \begin{displaymath} \gamma^* : SegalPreOperad \simeq [S(\Omega)^{op}, sSet] \hookrightarrow [\Omega^{op}, sSet] \,. \end{displaymath} Therefore the left and right adjoint to $\gamma^*$ are given by left and right [[Kan extension]] along $\gamma$. Explicitly, these adjoints are given as follows. For $X \in [\Omega^{op}, sSet]$, the Segal pre-operad $\gamma_!(X)$ sends a tree $T$ either to $X(T)$, if $T$ is non-linear, hence if it admits no morphism to $\eta$, or else to the [[pushout]] \begin{displaymath} \itexarray{ X(\eta) &\to& X(T) \\ \downarrow && \downarrow \\ \pi_0 X(\eta) &\to& \gamma_!(X)(T) } \end{displaymath} in [[sSet]], where the top morphism is $X(T \to \eta)$ for the unique morphism to $\eta$. In words, $\gamma_!(X)$ is obtained from $X$ precisely by contracting the simplicial set of colors to its set of connected components. \end{proof} \hypertarget{special_morphisms}{}\subsubsection*{{Special morphisms}}\label{special_morphisms} We discuss morphisms between Segal pre-operads with special properties, which will appear in the model structure. \begin{defn} \label{NormalMonomorphism}\hypertarget{NormalMonomorphism}{} Say a morphism $f$ in $SegalPreOperad$ is a \textbf{normal monomorphism} precisely if $\gamma^*(f)$ is a normal monomorphism (see [[generalized Reedy model structure]]), which in turn is the case if it is simplicial-degreewise a normal morphisms of [[dendroidal sets]] (see there for details). Correspondingly, a Segal pro-operad $X$ is called \emph{normal} if $\emptyset \to X$ is a normal monomorphism. \end{defn} \begin{defn} \label{PreOperadAcyclicFibration}\hypertarget{PreOperadAcyclicFibration}{} A morphism in $SegalPreOperad$ is called an \textbf{acyclic fibration} precisely if it has the [[right lifting property]] against all normal monomorphisms, def. \ref{NormalMonomorphism}. \end{defn} \begin{defn} \label{SegalWeakEquivalence}\hypertarget{SegalWeakEquivalence}{} Say a morphism $f$ in $SegalPreOperad$ is a \emph{Segal weak equivalence} precisely if $\gamma^*(f)$ is a weak equivalence in the [[model structure for dendroidal complete Segal spaces]] $[\Omega^{op}m, sSet]_{gReedy \atop cSegal}$. \end{defn} \begin{defn} \label{WeakEquivalencesAndFibrations}\hypertarget{WeakEquivalencesAndFibrations}{} Call a morphism in $SegalPreOperad$ \begin{itemize}% \item a weak equivalence precisely if it is a Segal weak equivalence, def. \ref{SegalWeakEquivalence}; \item a cofibration precisely if it is a normal monomorphism, def. \ref{NormalMonomorphism}. \end{itemize} \end{defn} Theorem \ref{ExistenceOfTheModelStructure} below asserts that this is indeed a model category struture whose fibrant objects are the Segal operads. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{of_the_various_classes_of_morphisms}{}\subsubsection*{{Of the various classes of morphisms}}\label{of_the_various_classes_of_morphisms} \begin{lemma} \label{}\hypertarget{}{} If $f : X \to Y$ in $[\Omega^{op}, sSet]$ is a normal monomorphism and $\pi_0 X(\eta) \to \pi_0 Y(\eta)$ is a monomorphism, then $\gamma_!(f)$ is normal in $SegalPreOperad$. \end{lemma} (\hyperlink{CisinskiMoerdijk}{Cis-Moer, lemma 7.4}). \begin{prop} \label{}\hypertarget{}{} The class of normal monomorphisms in $SegalPreOperad$ is [[cofibrantly generated model category|generated]] (under [[pushout]], [[transfinite composition]] and [[retracts]]) by the set \begin{displaymath} \{ \gamma_!(\partial \Delta[n] \times \Omega[T] \cup \Delta[n] \times \partial \Omega[T]) \to \gamma_! (\Delta[n], \Omega[T]) \}_{n \in \Delta, T \in \Omega, {\vert T\vert} \geq 1} \cup \{ \emptyset \to \eta \} \end{displaymath} \end{prop} (\hyperlink{CisinskiMoerdijk}{Cis-Moer, prop 7.5}). \begin{prop} \label{}\hypertarget{}{} Let $X \in [\Omega^{op}, sSet]_{gReedy \atop Segal}$ be fibrant. Then $\gamma_* X$ is a Reedy fibrant Segal operad. If $X$ is moreover fibrant in $[\Omega^{op}, sSet]_{gReedy \atop cSegal}$ then the [[unit of an adjunction|counit]] $\gamma^* \gamma* X \to X$ is a weak equivalence in $[\Omega^{op}, sSet]_{gReedy \atop cSegal}$. \end{prop} (\hyperlink{CisinskiMoerdijk}{Cis-Moer, prop 8.2}). \begin{lemma} \label{AcyclicFibrationsAreIndeedWeakEquivalences}\hypertarget{AcyclicFibrationsAreIndeedWeakEquivalences}{} An acyclic fibration in $SegalPreOperad$, def. \ref{PreOperadAcyclicFibration}, is also a weak equivalence in $[\Omega^{op}, sSet]_{gReedy \atop Segal}$. \end{lemma} (\hyperlink{CisinskiMoerdijk}{Cis-Moer, prop 8.12}). \hypertarget{of_the_model_structure_itself}{}\subsubsection*{{Of the model structure itself}}\label{of_the_model_structure_itself} \begin{theorem} \label{ExistenceOfTheModelStructure}\hypertarget{ExistenceOfTheModelStructure}{} The structures in def. \ref{WeakEquivalencesAndFibrations} make the category $SegalPreOperad$ a [[model category]] which is \begin{itemize}% \item [[cofibrantly generated model category|cofibrantly generated]]; \item [[left proper model category|left proper]]. \end{itemize} \end{theorem} This is (\hyperlink{CisinskiMoerdijk}{Cis-Moer, theorem 8.13}). \begin{proof} The existence of the cofibrantly generated model structure follows with \emph{\href{combinatorial+model+category#SmithTheorem}{Smith's theorem}}: by the discussion there it is sufficient to notice that \begin{enumerate}% \item the Segal equivalences are an accessibly embedded accessible full subcategory of the arrow category; \item the acyclic cofibrations are closed under pushout and retract; (both of these because these morphisms come from the [[combinatorial model category]] $[\Omega^{op}, sSet]_{gReedy \atop cSegal}$) \item the morphisms with right lifting against the normal monomorphisms are weak equivalences, by lemma \ref{AcyclicFibrationsAreIndeedWeakEquivalences}. \end{enumerate} \end{proof} \hypertarget{relation_to_other_model_structures}{}\subsubsection*{{Relation to other model structures}}\label{relation_to_other_model_structures} We discuss the relation to various other model structures for operads. For an overview see \emph{[[table - models for (infinity,1)-operads]]}. \hypertarget{to_dendroidal_complete_segal_spaces}{}\paragraph*{{To dendroidal complete Segal spaces}}\label{to_dendroidal_complete_segal_spaces} (\ldots{}) [[model structure for dendroidal complete Segal spaces]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Ieke Moerdijk]], \emph{Dendroidal Segal spaces and infinity-operads} (\href{http://arxiv.org/abs/1010.4956}{arXiv:1010.4956}) \end{itemize} [[!redirects Segal operad]] [[!redirects Segal operads]] \end{document}