\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure for excisive functors} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{TheUnderlyingCategories}{The underlying categories}\dotfill \pageref*{TheUnderlyingCategories} \linebreak \noindent\hyperlink{TheModelStructures}{The model structures}\dotfill \pageref*{TheModelStructures} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ModelStructureForSpectra}{Relation to BF-model structure on sequential spectra}\dotfill \pageref*{ModelStructureForSpectra} \linebreak \noindent\hyperlink{SmashProduct}{Symmetric monoidal smash product}\dotfill \pageref*{SmashProduct} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure for [[excisive functors]] on [[functors]] from ([[finite homotopy type|finite]]) pointed simplicial sets to pointed simplicial sets (\hyperlink{Lydakis98}{Lydakis 98, theorem 9.2}, \hyperlink{BiedermannChornyRondings06}{Biedermann-Chorny-R\"o{}ndings 06, section 9}), hence (see \href{excisive+%28∞%2C1%29-functor#SpectrumObjects}{here}) a [[model structure for spectra]] (\hyperlink{Lydakis98}{Lydakis 98, theorem 11.3}). Special case of a [[model structure for n-excisive functors]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{TheUnderlyingCategories}{}\subsubsection*{{The underlying categories}}\label{TheUnderlyingCategories} \begin{defn} \label{SimplicialSetsPointedAndFinite}\hypertarget{SimplicialSetsPointedAndFinite}{} Write \begin{itemize}% \item [[sSet]] for the [[category]] of [[simplicial sets]]; \item $sSet^{\ast/}$ for the category of [[pointed object|pointed]] simplicial sets; \item $sSet_{fin}^{\ast/}\simeq s(FinSet)^{\ast/} \hookrightarrow sSet^{\ast/}$ for the [[full subcategory]] of [[pointed object|pointed]] [[simplicial object|simplicial]] [[finite sets]]. \end{itemize} Write \begin{displaymath} sSet^{\ast/} \stackrel{\overset{(-)_+}{\longleftarrow}}{\underset{u}{\longrightarrow}} sSet \end{displaymath} for the [[free-forgetful adjunction]], where the [[left adjoint]] functor $(-)_+$ freely adjoins a base point. Write \begin{displaymath} \wedge \colon sSet^{\ast/} \times sSet^{\ast/} \longrightarrow sSet^{\ast/} \end{displaymath} for the [[smash product]] of [[pointed object|pointed]] [[simplicial sets]], similarly for its restriction to $sSet_{fin}^{\ast}$: \begin{displaymath} X \wedge Y \coloneqq cofib\left( \; \left(\, (u(X),\ast) \sqcup (\ast, u(Y)) \,\right) \longrightarrow u(X) \times u(Y) \; \right) \,. \end{displaymath} This gives $sSet^{\ast/}$ and $sSet^{\ast/}_{fin}$ the structure of a [[closed monoidal category]] and we write \begin{displaymath} [-,-]_\ast \;\colon\; (sSet^{\ast/})^{op} \times sSet^{\ast/} \longrightarrow sSet^{\ast/} \end{displaymath} for the corresponding [[internal hom]], the pointed [[function complex]] functor. \end{defn} \begin{remark} \label{}\hypertarget{}{} For $X,Y\in sSet^{\ast/}$, the internal hom $[X,Y] \in sSet^{\ast/}$ is the simplicial set \begin{displaymath} [X,Y]_n = Hom_{sSet^{\ast/}}(X \wedge \Delta[n]_+, Y) \end{displaymath} regarded as pointed by the [[zero morphism]] (the one that factors through the base point), and the [[composition]] morphism \begin{displaymath} \circ \:\colon\; [X,Y] \wedge [Y,Z] \longrightarrow [X,Z] \end{displaymath} is given by \begin{displaymath} \begin{aligned} \circ_n & \;\colon\; ( X \wedge \Delta[n]_+ \stackrel{f}{\longrightarrow} Y \;,\; Y \wedge \Delta[n]_+ \stackrel{g}{\longrightarrow} Z ) \\ & \mapsto ( X \wedge \Delta[n]_+ \stackrel{X \wedge (diag_{\Delta[n]})_+}{\longrightarrow} X \wedge (\Delta[n] \times \Delta[n])_+ \simeq X \wedge \Delta[n]_+ \wedge \Delta[n]_+ \stackrel{f \wedge id}{\longrightarrow} Y \wedge \Delta[n]_+ \stackrel{g}{\longrightarrow} Z ) \end{aligned} \,. \end{displaymath} \end{remark} We regard all the categories in def. \ref{SimplicialSetsPointedAndFinite} canonically as [[simplicially enriched categories]], and in fact regard $sSet^{\ast/}$ and $sSet^{\ast/}_{fin}$ as $sSet^{\ast/}$-[[enriched categories]]. \begin{remark} \label{}\hypertarget{}{} The [[smash product]] as an $sSet^{\ast/}$-[[enriched functor]] takes \begin{displaymath} \wedge \;\colon\; [X_1,Y_1] \wedge [X_2, Y_2] \longrightarrow [X_1 \wedge X_2, Y_1\wedge Y_2] \end{displaymath} by \begin{displaymath} \begin{aligned} \wedge_n & \colon ( X_1 \wedge \Delta[n]_+ \stackrel{f_1}{\longrightarrow} Y_1 \;,\; X_2 \wedge \Delta[n]_+ \stackrel{f_2}{\longrightarrow} Y_2 ) \\ & \mapsto X_1 \wedge X_2 \wedge \Delta[n]_+ \stackrel{id \wedge diag_+}{\longrightarrow} X_1 \wedge X_2 \wedge (\Delta[n] \times \Delta[n])_+ \simeq X_1 \wedge X_2 \wedge \Delta[n]_+ \wedge \Delta[n]_+ \simeq (X_1 \wedge \Delta[n]_+) \wedge (X_2 \wedge \Delta[n]_+) \stackrel{(f_1)_n \wedge (f_2)_n}{\longrightarrow} Y_1 \wedge Y_2 \end{aligned} \end{displaymath} \end{remark} The category that is discussed \hyperlink{TheModelStructures}{below} to support a model structure for [[excisive functors]] is the $sSet^{\ast/}$-[[enriched functor category]] \begin{displaymath} [sSet^{\ast/}_{fin}, sSet^{\ast/}] \,. \end{displaymath} (\hyperlink{Lydakis98}{Lydakis 98, example 3.8, def. 4.4}) In order to compare this to model structures for [[sequential spectra]] we consider also the following variant. \begin{defn} \label{CategoriesOfStandardSpheres}\hypertarget{CategoriesOfStandardSpheres}{} Write $S^1_{std} \coloneqq \Delta[1]/\partial\Delta[1]\in sSet^{\ast/}$ for the standard minimal pointed simplicial [[1-sphere]]. Write \begin{displaymath} \iota \;\colon\; StdSpheres \longrightarrow sSet^{\ast/}_{fin} \end{displaymath} for the non-full $sSet^{\ast/}$-[[enriched category|enriched]] [[subcategory]] of pointed [[simplicial object|simplicial]] [[finite sets]], def. \ref{SimplicialSetsPointedAndFinite} whose \begin{itemize}% \item [[objects]] are the [[smash product]] powers $S^n_{std} \coloneqq (S^1_{std})^{\wedge^n}$ (the standard minimal simplicial [[n-spheres]]); \item [[hom-objects]] are \begin{displaymath} [S^{n}_{std}, S^{n+k}_{std}]_{StdSpheres} \coloneqq \left\{ \itexarray{ \ast & for & k \lt 0 \\ im(S^{k}_{std} \stackrel{}{\to} [S^n_{std}, S^{n+k}_{std}]_{sSet^{\ast/}_{fin}}) & otherwise } \right. \end{displaymath} \end{itemize} \end{defn} (\hyperlink{Lydakis98}{Lydakis 98, def. 4.2}) \begin{prop} \label{}\hypertarget{}{} There is an $sSet^{\ast/}$-[[enriched functor]] \begin{displaymath} (-)^seq \;\colon\; [StdSpheres,sSet^{\ast/}] \longrightarrow SeqPreSpec(sSet) \end{displaymath} (from the category of $sSet^{\ast/}$-[[enriched presheaves|enriched copresheaves]] on the categories of standard simplicial spheres of def. \ref{CategoriesOfStandardSpheres} to the category of [[sequential prespectra]] in [[sSet]]) given on objects by sending $X \in [StdSpheres,sSet^{\ast/}]$ to the sequential prespectrum $X^{seq}$ with components \begin{displaymath} X^{seq}_n \coloneqq X(S^n_{std}) \end{displaymath} and with structure maps \begin{displaymath} \frac{S^1_{std} \wedge X^{seq}_n \stackrel{\sigma_n}{\longrightarrow} X^{seq}_n}{S^1_{std} \longrightarrow [X^{seq}_n, X^{seq}_{n+1}]} \end{displaymath} given by \begin{displaymath} S^1_{std} \stackrel{\widetilde{id}}{\longrightarrow} [S^n_{std}, S^{n+1}_{std}] \stackrel{X_{S^n_{std}, S^{n+1}_{std}}}{\longrightarrow} [X^{seq}_n, X^{seq}_{n+1}] \,. \end{displaymath} This is an $sSet^{\ast/}$ [[enriched category theory|enriched]] [[equivalence of categories]]. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, prop. 4.3}) \hypertarget{TheModelStructures}{}\subsubsection*{{The model structures}}\label{TheModelStructures} Consider the $sSet^{\ast/}$-[[enriched functor category]] $[sSet^{\ast/}_{fin}, sSet^{\ast/}]$ from \hyperlink{TheUnderlyingCategories}{above}. With $S^1_{std} \coloneqq \Delta[1]/\partial\Delta[1] \in sSet^{\ast/}$ we take [[looping and delooping]] $(\Sigma \dashv \Omega)$ to mean concretely the operation on [[smash product]] and pointed [[exponential]] with this particular $S^1_{std}$: \begin{displaymath} (\Sigma \dashv \Omega) \coloneqq ( S^1_{std}\wedge(-) \dashv [S^1_{std},-] ) \colon sSet^{\ast/} \longrightarrow sSet^{\ast/} \,.- \end{displaymath} These operations extend objectwise to $[sSet^{\ast/}_{fin}, sSet^{\ast/}]$, where we denote them by the same symbols. \begin{defn} \label{Tinfinity}\hypertarget{Tinfinity}{} Write \begin{displaymath} T \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}] \longrightarrow [sSet^{\ast/}_{fin}, sSet^{\ast/}] \end{displaymath} for the [[functor]] given on $X$ by \begin{displaymath} T X \colon K \mapsto \Omega X(\Sigma K) \,. \end{displaymath} Write \begin{displaymath} \tau \;\colon\; id \longrightarrow T \end{displaymath} for the [[natural transformation]] whose component $\tau_{X}(K) \;\colon\; X(K) \to \Omega (X(\Sigma K))$ is the $(\Sigma \dashv \Omega)$-[[adjunct]] of the canonical morphism $\Sigma X(K) \longrightarrow X(\Sigma K)$ induced from \begin{displaymath} X \left( \itexarray{ K & \longrightarrow & \ast \\ \downarrow &\swArrow& \downarrow \\ \ast &\longrightarrow& \Sigma K } \right) \;\;\;\; = \;\;\;\; \itexarray{ X(K) &&\longrightarrow&& \ast \\ \downarrow &&& \swarrow & \downarrow \\ \downarrow && \Sigma X(K) && \downarrow \\ \downarrow & \nearrow && \searrow^{\mathrlap{\tau_{X}(K)}}& \downarrow \\ \ast &&\longrightarrow && X(\Sigma K) } \,. \end{displaymath} Write \begin{displaymath} T^\infty \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}] \longrightarrow [sSet^{\ast/}_{fin}, sSet^{\ast/}] \end{displaymath} for the functor given by $X$ by the [[sequential colimit]] \begin{displaymath} T^\infty X \coloneqq \underset{\longrightarrow}{\lim} \left( X \stackrel{\tau_X}{\longrightarrow} T X \stackrel{T(\tau_X)}{\longrightarrow} T (T X) \stackrel{}{\longrightarrow} \simeq \right) \,. \end{displaymath} Write $Fib \colon sSet^{\ast} \to sSet^{\ast}$ for any [[Kan fibrant replacement]] functor. Say that the \emph{stabilization} ([[spectrification]]) of $X$ is \begin{displaymath} stab(X) \coloneqq T^\infty (Fib(Lan X(Fib(-)))) \,, \end{displaymath} where $Lan X \colon sSet^{\ast/} \to sSet^{\ast}$ is the [[left Kan extension]] of $X$ along the inclusion $sSet^{\ast/}_{fin} \hookrightarrow sSet^{\ast/}$. \end{defn} \begin{defn} \label{ClassesOfMorphismsForModelStructureForExcisiveFunctors}\hypertarget{ClassesOfMorphismsForModelStructureForExcisiveFunctors}{} Say that a morphism $f \colon X \to Y$ in $[sSet^{\ast/}_{fin}, sSet^{\ast/}]$ is \begin{itemize}% \item a \emph{stable weak equivalence} if its stabilization, def. \ref{Tinfinity}, takes value on each $K \in sSet^{\ast/}$ in [[weak homotopy equivalences]] in $sSet^{\ast/}$; \item a \emph{stable cofibration} if it has the [[left lifting property]] against those morphisms whose value on every $K \in sSet^{\ast/}$ is a [[Kan fibration]]. \end{itemize} \end{defn} (\hyperlink{Lydakis98}{Lydakis 98, def. 9.1, def. 7.1}) \begin{prop} \label{LydakisModelStructure}\hypertarget{LydakisModelStructure}{} The classes of morphisms of def. \ref{ClassesOfMorphismsForModelStructureForExcisiveFunctors}, define a [[model category]] structure \begin{displaymath} [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} \,. \end{displaymath} \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, theorem 9.2}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ModelStructureForSpectra}{}\subsubsection*{{Relation to BF-model structure on sequential spectra}}\label{ModelStructureForSpectra} There is a [[Quillen equivalence]] between the [[Bousfield-Friedlander model structure]] on [[sequential spectra]] and the Lydakis model structure $[sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}$ from prop. \ref{LydakisModelStructure}. \begin{prop} \label{SequentialSpectraAsSimplicialFunctorsOnStandardSpheres}\hypertarget{SequentialSpectraAsSimplicialFunctorsOnStandardSpheres}{} There is an $sSet^{\ast/}$-[[enriched functor]] \begin{displaymath} (-)^seq \;\colon\; [StdSpheres,sSet^{\ast/}] \longrightarrow SeqPreSpec(sSet) \end{displaymath} (from the category of $sSet^{\ast/}$-[[enriched presheaves|enriched copresheaves]] on the categories of standard simplicial spheres of def. \ref{CategoriesOfStandardSpheres} to the category of sequential prespectra in [[sSet]]) given on objects by sending $X \in [StdSpheres,sSet^{\ast/}]$ to the sequential prespectrum $X^{seq}$ with components \begin{displaymath} X^{seq}_n \coloneqq X(S^n_{std}) \end{displaymath} and with structure maps \begin{displaymath} \frac{S^1_{std} \wedge X^{seq}_n \stackrel{\sigma_n}{\longrightarrow} X^{seq}_n}{S^1_{std} \longrightarrow [X^{seq}_n, X^{seq}_{n+1}]} \end{displaymath} given by \begin{displaymath} S^1_{std} \stackrel{\widetilde{id}}{\longrightarrow} [S^n_{std}, S^{n+1}_{std}] \stackrel{X_{S^n_{std}, S^{n+1}_{std}}}{\longrightarrow} [X^{seq}_n, X^{seq}_{n+1}] \,. \end{displaymath} This is an $sSet^{\ast/}$ [[enriched category theory|enriched]] [[equivalence of categories]]. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, prop. 4.3}) \begin{prop} \label{QuillenEquivalenceBetweenSequentialSpectraAndExcisiveFunctors}\hypertarget{QuillenEquivalenceBetweenSequentialSpectraAndExcisiveFunctors}{} The [[adjunction]] \begin{displaymath} (\iota_\ast \dashv \iota^\ast) \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} \stackrel{\overset{\iota_\ast}{\longleftarrow}}{\underset{\iota^\ast}{\longrightarrow}} [StdSpheres, sSet^{\ast/}] \underoverset{\simeq}{(-)^{seq}}{\longrightarrow} SeqPreSpec(sSet)_{BF} \end{displaymath} (given by restriction $\iota^\ast$ along the defining inclusion $\iota$ of def. \ref{CategoriesOfStandardSpheres} and by left [[Kan extension]] $\iota_\ast$ along $\iota$, and combined with the equivalence $(-)^{seq}$ of prop. \ref{SequentialSpectraAsSimplicialFunctorsOnStandardSpheres}) is a [[Quillen adjunction]] and in fact a [[Quillen equivalence]] between the [[Bousfield-Friedlander model structure]] on sequential prespectra and Lydakis' model structure for excisive functors, prop. \ref{LydakisModelStructure}. \end{prop} \hypertarget{SmashProduct}{}\subsubsection*{{Symmetric monoidal smash product}}\label{SmashProduct} The [[excisive functors]] naturally carry a [[smash product]] (\hyperlink{Lydakis98}{Lydakis 98, def. 5.1}) making the model structure for 1-excisive functors a [[symmetric monoidal model category]] (\hyperlink{Lydakis98}{Lydakis 98, section 12}). Via the translation to [[sequential spectra]] of prop. \ref{LydakisModelStructure} this is a model for the [[smash product of spectra]] (\hyperlink{Lydakis98}{Lydakis 98, theorem 12.5}); hence it is a [[symmetric smash product on spectra]]. A [[monoid]] with respect to this smash product (hence a [[ring spectrum]]) is equivalently a [[functor with smash products]] (``FSP'') as earlier considered in (\hyperlink{Bökstedt86}{B\"o{}kstedt 86}). \begin{defn} \label{DayConvolutionStructureOnExcisiveFunctors}\hypertarget{DayConvolutionStructureOnExcisiveFunctors}{} Since $(sSet^{\ast/}, \wedge)$ (def. \ref{SimplicialSetsPointedAndFinite}) is a [[symmetric monoidal category]], $[sSet^{\ast}_{fin}, sSet^{\ast/}]$ canonically becomes symmetric monoidal itself via the induced [[Day convolution product]]. We write \begin{displaymath} \left(\, [sSet^{\ast/}_{fin}, sSet^{\ast/}], \; \wedge_{Say} \right) \end{displaymath} for this [[symmetric monoidal category]]. \end{defn} \begin{prop} \label{LydakisTensorProductIsDayConvolution}\hypertarget{LydakisTensorProductIsDayConvolution}{} The smash product on $[sSet^{\ast/}_{fin}, sSet^{\ast/}]$ considered (\hyperlink{Lydakis98}{Lydakis 98, def. 5.1}) coincides with the [[Day convolution product]] of def. \ref{DayConvolutionStructureOnExcisiveFunctors}. \end{prop} \begin{proof} The [[Day convolution]] product is characterized (see \href{Day+convolution#DayConvolutionViaNaturalIsosInvolvingExternalTensorAndTensor}{this proposition}) by making a [[natural isomorphism]] of the form \begin{displaymath} [sSet^{\ast/}_{fin}, sSet^{\ast/}](X \wedge Y, Z) \simeq [sSet^{\ast/}_{fin} \times sSet^{\ast/}_{fin}, sSet^{\ast/}](X \tilde{\wedge} Y, Z \circ \wedge) \end{displaymath} where the \emph{external smash product} $\tilde {\wedge}$ on the right is defined by $X \tilde{\wedge} Y \coloneqq \wedge \circ (X,Y)$. Now, (\hyperlink{Lydakis98}{Lydakis 98, def. 5.1}) sets \begin{displaymath} X \wedge Y \coloneqq \wedge_\ast (X \tilde{\wedge} Y) \end{displaymath} where, by (\hyperlink{Lydakis98}{Lydakis 98, prop. 3.23}), $\wedge_\ast$ is the [[left adjoint]] to $\wedge^\ast(-) \coloneqq (-)\circ \wedge$. Hence the [[adjunction]] isomorphism gives the above characterization. \end{proof} \begin{prop} \label{SmashProductCompatibleWithTheOneOnSpectra}\hypertarget{SmashProductCompatibleWithTheOneOnSpectra}{} Under the Quillen equivalence of prop. \ref{QuillenEquivalenceBetweenSequentialSpectraAndExcisiveFunctors} the symmetric monoidal [[Day convolution product]] on excisive simplicial functors (prop. \ref{LydakisTensorProductIsDayConvolution}) is identified with the proper [[smash product of spectra]] realized on sequential spectra by the \href{sequential+spectrum#SmashProductByDoublingDegrees}{standard formula}. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, theorem 12.5}) This implies that any incarnation of the [[sphere spectrum]] in $[sSet^{\ast}_{fin}, sSet^{\ast/}]$, possibly suitably replaced acts as the [[tensor unit]] up to stable weak equivalence. The following says that the canonical incarnation of the sphere spectrum actually is the genuine (1-categorical) tensor unit: \begin{defn} \label{StandardSphereSpectrum}\hypertarget{StandardSphereSpectrum}{} Write \begin{displaymath} \mathbb{S}_{std}\in [sSet^{\ast/}_{fin}, sSet^{\ast/}] \end{displaymath} for the canonical inclusion $sSet^{\ast/}_{fin} \hookrightarrow sSet^{\ast/}$. (the standard incarnation of the [[sphere spectrum]] in the model structure for excisive functors). \end{defn} \begin{prop} \label{}\hypertarget{}{} The object $\mathbb{S}_{std}$ of def. \ref{StandardSphereSpectrum} is (up to [[isomorphism]]) the [[tensor unit]] in $([sSet^{\ast/}_{fin}, sSet^{\ast}], \wedge_{Day})$. \end{prop} \begin{proof} This is (\hyperlink{Lydakis98}{Lydakis 98, theorem 5.9}), but it is immediate with prop. \ref{LydakisTensorProductIsDayConvolution}, using that the tensor unit for Day convolution is the functor [[representable functor|represented]] by the tensor unit in the underlying site (\href{Day+convolution#DayConvolutionYieldsMonoidalCategoryStructure}{this proposition}). \end{proof} \begin{prop} \label{LydakisModelCategoryIsMonoidal}\hypertarget{LydakisModelCategoryIsMonoidal}{} Equipped with the [[Day convolution]] tensor product (prop. \ref{LydakisTensorProductIsDayConvolution}) the Lydakis model category of prop. \ref{LydakisModelStructure} becomes a [[monoidal model category]] \begin{displaymath} \left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right) \,. \end{displaymath} \end{prop} \begin{proof} The [[pushout product axiom]] is (\hyperlink{Lydakis98}{Lydakis 98, theorem 12.3}). Moreover (\hyperlink{Lydakis98}{Lydakis 98, theorem 12.4}), shows that tensoring with cofibrant objects preserves all stable weak equivalences, hence in particular preserves cofibrant resolution of the tensor unit. \end{proof} This means that ([[commutative monoid|commutative]]) [[monoids]] in the monoidal Lydakis model structure $\left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right)$ are good models for [[ring spectra]] ([[E-infinity rings]]/[[A-infinity rings]]). \begin{prop} \label{MonoidsInLydakisModelStructureAreFSP}\hypertarget{MonoidsInLydakisModelStructureAreFSP}{} Monoids (commutative monoids) in the Lydakis monoidal model category $\left( [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly}, \; \wedge_{Day} \right)$ of prop. \ref{LydakisModelCategoryIsMonoidal} are equivalently ([[symmetric monoidal functor|symmetric]]) [[lax monoidal functors]] of the form \begin{displaymath} sSet^{\ast/}_{fin} \longrightarrow sSet^{\ast/} \end{displaymath} also known as ``[[functors with smash product]]'' ([[FSP]]s). \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, remark 5.12}) \begin{proof} Since the tensor product is [[Day convolution]] of the [[smash product]] on $sSet^{\ast/}_{fin}$, def. \ref{DayConvolutionStructureOnExcisiveFunctors}, this is a special casse of a general property of [[Day convolution]], see \href{Day+convolution#DayMonoidsAreLaxMonoidalFunctorsOnTheSite}{this proposition}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[model structure on functors]] [[model structure on spectra]] \begin{itemize}% \item [[sequential spectrum]], [[model structure on sequential spectra]] \end{itemize} with [[symmetric monoidal smash product of spectra]] \begin{itemize}% \item [[symmetric spectrum]], [[model structure on symmetric spectra]] \item [[orthogonal spectrum]], [[model structure on orthogonal spectra]] \item [[S-module]], [[model structure on S-modules]] \item [[excisive functor]], \textbf{model structure on excisive functors} \item [[Model categories of diagram spectra]] \end{itemize} [[model structure for n-excisive functors]] \hypertarget{references}{}\subsection*{{References}}\label{references} Model structure for [[excisive functors]] on [[simplicial sets]] (hence also a [[model structure for spectra]]) is discussed in: \begin{itemize}% \item Lydakis, \emph{Simplicial functors and stable homotopy theory} Preprint, available via Hopf archive, 1998 (\href{http://hopf.math.purdue.edu/Lydakis/s_functors.pdf}{pdf}) \end{itemize} A similar model structure on functors on topological spaces was given in \begin{itemize}% \item [[William Dwyer]], \emph{Localizations}, In \emph{Axiomatic, enriched and motivic homotopy theory}, volume 131 of NATO Sci. Ser. II Math. Phys. Chem., pages 3--28. Kluwer Acad. Publ., Dordrecht, 2004 \end{itemize} and also excisive functors modeled on topological spaces are the $\mathcal{W}$-spectra in \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], \emph{[[Model categories of diagram spectra]]}, Proceedings of the London Mathematical Society, 82 (2001), 441-512 (\href{http://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf}{pdf}) \end{itemize} Discussion of the restriction from excisive functors to [[symmetric spectra]] includes \begin{itemize}% \item [[Stefan Schwede]], chapter I, section 7.3 of \emph{[[Symmetric spectra]]} (2012) \end{itemize} The [[functors with smash products]] (``FSP''s) appearing in (\hyperlink{Lydakis98}{Lydakis 98, remark 5.12}) had earlier been considered in \begin{itemize}% \item [[Marcel Bökstedt]], \emph{Topological Hochschild homology}. Preprint, Bielefeld, 1986 \end{itemize} Further generalization of the model structure for excisive functor, in particular to [[enriched functors]] and to a [[model structure for n-excisive functors]] for $n \geq 1$ is discussed in \begin{itemize}% \item [[Georg Biedermann]], [[Boris Chorny]], Oliver R\"o{}ndigs, \emph{Calculus of functors and model categories}, Advances in Mathematics 214 (2007) 92-115 (\href{http://arxiv.org/abs/math/0601221}{arXiv:math/0601221}) \item [[Georg Biedermann]], Oliver R\"o{}ndigs, \emph{Calculus of functors and model categories II} (\href{http://arxiv.org/abs/1305.2834v2}{arXiv:1305.2834v2}) \end{itemize} [[!redirects model structure for excisive functors]] [[!redirects model structures for excisive functors]] [[!redirects model structure on excisive functors]] [[!redirects model structures on excisive functors]] \end{document}