\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure for left fibrations} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Motivation}{Motivation}\dotfill \pageref*{Motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{WeakEquivalences}{Weak equivalences}\dotfill \pageref*{WeakEquivalences} \linebreak \noindent\hyperlink{ChangeOfBase}{Change of base}\dotfill \pageref*{ChangeOfBase} \linebreak \noindent\hyperlink{GrothendieckConstruction}{Grothendieck construction}\dotfill \pageref*{GrothendieckConstruction} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{model structure for right fibrations} $(SSet/S)_{rfib}$ is a [[model category]] structure on the [[overcategory]] $SSet/S$ of [[simplicial set]]s over a given [[quasi-category]] $S$, that [[presentable (∞,1)-category|presents]] the [[(∞,1)-category]] of [[right Kan fibration]]s [[fibrations of quasi-categories|of quasi-categories]] over $S$ \begin{displaymath} ((SSet/S)_{rfib})^\circ \simeq RFib(S) \,. \end{displaymath} This is the $(\infty,1)$-analog of the $(2,1)$-category $Fib_{grpd}(S)$ of [[category fibered in groupoids|categories fibered in groupoids]] over a category $S$. Similarly there is an analogous \textbf{model structure for left fibrations} that models [[left Kan fibration]]s, i.e. op-fibrations in [[∞-groupoid]]s \begin{displaymath} ((SSet/S)_{lfib})^\circ \simeq LFib(S) \,. \end{displaymath} The extension of this from right fibrations to [[Cartesian fibration]]s and from left fibrations to [[coCartesian fibration]]s is the [[model structure for coCartesian fibrations]]. The [[(∞,1)-Grothendieck construction]] relates this to the [[global model structure on functors]] that presents the [[(∞,1)-category of (∞,1)-functors]] $Fun(S,\infty Grpd)$ (for left fibrations) and $Fun(S^{op},\infty Grpd)$ (for right fibrations). \hypertarget{Motivation}{}\subsection*{{Motivation}}\label{Motivation} The following [[model category]] structure is best understood with the [[(∞,1)-Grothendieck construction]] in mind, which it serves to model. Recall from the discussion there that given a morphism $p : X \to S$ of [[quasi-categories]], the [[(∞,1)-functor]] $S^{op} \to \infty Grpd$ that the left adjoint to the Grothendieck construction extracts from it is all encoded in the [[pushout]] $X^{\triangleleft} \coprod_X S$ in \begin{displaymath} \itexarray{ X &\stackrel{p}{\to}& S \\ \downarrow && \downarrow \\ X^{\triangleleft} &\to& X^{\triangleleft} \coprod_X S } \,, \end{displaymath} where $X^\triangleleft = (*) \star X$ is the [[join of quasi-categories|join]] of $X$ with the point, i.e. $X$ with an [[initial object]] freely adjoined to it. More discussion of why this is the case is at \href{http://ncatlab.org/nlab/show/Grothendieck+construction#adjunction}{Adjoints to the Grothendieck construction}. The model category structure described below declares that a morphism in the [[overcategory]] $sSet/S$ is a weak equivalence if it induces a weak equivalence of the quasi-categories given by these pushouts. So this is effectively saying that we regard a morphism of right fibration of quasi-categories as a weak equivalences, if under the left adjoint to the $(\infty,1)$-Grothendieck construction it induces a weak equivalences of the $(\infty,1)$-functors that classify these fibrations. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $f : X \to S$ a morphism of [[simplicial set]]s, write $C^{\triangleleft}(f)$ for the [[pushout]] \begin{displaymath} \itexarray{ X &\hookrightarrow& X^{\triangleleft} \\ \downarrow && \downarrow \\ S &\to& S \coprod_{X} X^{\triangleleft} & =: C^{\triangleleft}(f) } \end{displaymath} in the category [[sSet]] of simplicial sets. Call this the \textbf{left cone} over $f$. The [[colimit]]s in [[sSet]] are computed componentwise, so that the set of vertices $C^{\triangleleft}(f)_0$ is the disjoint union of the vertices of $S$ and one extra vertex $v$, the \textbf{cone point}. \begin{defn} \label{}\hypertarget{}{} ([[Higher Topos Theory|HTT, def. 2.1.4.5]]) The \textbf{model structure for left fibrations} or \textbf{covariant model structure} $(sSet/S)_{lfib}$ on $SSet/S$ is given by A morphism $f : X \to Y$ is \begin{itemize}% \item a cofibration if the underlying morphism of simplicial sets is a cofibration in the standard [[model structure on simplicial sets]], i.e. a [[monomorphism]]; \item a weak equivalence if the induced morphism of cones \begin{displaymath} X^{\triangleleft} \coprod_X S \to Y^{\triangleleft} \coprod_Y S \end{displaymath} is a weak equivalence in the Joyal [[model structure for quasi-categories]], where $X^{\triangleleft}$ is the [[join of simplicial sets|join]] $X^{\triangleleft} := {*} \star X$. \end{itemize} \end{defn} \begin{prop} \label{BasicProperties}\hypertarget{BasicProperties}{} This is a \begin{itemize}% \item [[proper model category|left proper]] \item [[simplicial model category|simplicial]] \item [[combinatorial model category]]. \end{itemize} ([[Higher Topos Theory|HTT, prop 2.1.4.7, 2.1.4.8]]) We have \begin{itemize}% \item The fibrant objects are precisely the [[left fibration]]s ([[Higher Topos Theory|HTT, corollary 2.2.3.12]]) \item Every left anodyne morphism is an acyclic cofibration. ([[Higher Topos Theory|HTT, prop 2.1.4.9]]) \end{itemize} \end{prop} An alternative characterization of this model structure is: \begin{theorem} \label{AsLocalization}\hypertarget{AsLocalization}{} The model structure for left fibrations is the left [[Bousfield localization]] of the [[model structure on an overcategory|overcategory]] model structure on $SSet/X$ induced by the [[model structure for quasicategories]] on $SSet$ at the set of maps $\{ \Delta^n_0 \hookrightarrow \Delta^n | n\ge 0, \Delta^n \to X \}$ indexed by all the simplices of $X$. \end{theorem} This is mentioned in \hyperlink{HeutsMoerdijk13}{Heuts-Moerdijk}, p.5; see also \href{http://nforum.ncatlab.org/discussion/915/model-structure-for-left-fibrations/?Focus=53814#Comment_53814}{this discussion}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{WeakEquivalences}{}\subsubsection*{{Weak equivalences}}\label{WeakEquivalences} \begin{prop} \label{}\hypertarget{}{} Let $S$ be any [[simplicial set]]. Every morphism \begin{displaymath} \itexarray{ X &&\to&& Y \\ & \searrow && \swarrow \\ && S } \end{displaymath} in $sSet_S$ for which $X\to Y$ is [[left fibration|left anodyne]] is a weak equivalence in the model structure for left fibrations. \end{prop} This is [[Higher Topos Theory|HTT, prop. 2.1.4.6]]. \begin{proof} Recall from that left anodyne morphisms are the weakly saturated class generated by the [[horn]] inclusions (i.e. under [[transfinite composition]] of [[retract]]s of [[pushout]]s). Therefore it is sufficient to check the statement for these generating morphisms. By the definition of weak equivalences above, this means that we need to check that \begin{displaymath} (\Lambda[n]_i)^{\triangleleft} \coprod_{\Lambda[n]_i} S \to (\Delta[n])^{\triangleleft} \coprod_{\Delta[n]_i} S \end{displaymath} is a weak equivalence in $sSet_{Quillen}$. Observe that this is a [[pushout]] \begin{displaymath} \itexarray{ \Lambda[n+1]_{i+1} &\to& (\Lambda[n]_i)^{\triangleleft} \coprod_{\Lambda^n_i} S \\ \downarrow && \downarrow \\ \Delta[n+1] &\to& (\Delta[n])^{\triangleleft} \coprod_{\Delta^n} S } \end{displaymath} of the [[inner fibration|inner anodyne morphism]] $\Lambda[n+1]_{i+1} \to \Delta[n+1]$ and therefore a weak equivalence. To illustrate the above pushout property set $n = 2$ for example. Start with a 2-simplex $\sigma$ in $S$. Then $(\Delta^2)^{\triangleleft} \coprod_{\Delta^2} S$ is the original simplicial set $S$ together with a tetrahedron $\Delta^3$ built over $\sigma$. One face of the tetrahedron is the original 2-simplex $\sigma$ in $S$, the three others ``stick out'' of $S$: The simplicial set $(\Lambda^2_1)^{\triangleleft} \coprod_{\Lambda^2_1} S$ is accordingly the simplicial set $S$ with only two of the three faces of this tetrahedron over $\sigma$ erected. The map $(\Lambda^3_2) \to (\Delta^2)^{\triangleleft} \coprod_{\Delta^2} S$ identifies the horn of this tetrahedron given by these two new faces and the original face $\sigma$. The pushout therefore glues in the remaining face of the tetrahedron and fills it with a 3-cell. \end{proof} \hypertarget{ChangeOfBase}{}\subsubsection*{{Change of base}}\label{ChangeOfBase} For every morphism $j : S \to S'$ we have the corresponding [[adjunction]] on [[overcategories]] \begin{displaymath} (j_! \dashv j^*) : sSet/S \stackrel{\overset{f_!}{\to}}{\underset{j^*}{\leftarrow}} sSet/{S'} \,, \end{displaymath} where \begin{itemize}% \item $j_!$ is given by postcomposition of $j$; \item $j^*$ is given by [[pullback]] along $j$. \end{itemize} \begin{prop} \label{}\hypertarget{}{} \textbf{(change of base)} This is a [[Quillen adjunction]] with respect to the model structures for left fibrations over $S$ and $S'$, respectively. ([[Higher Topos Theory|HTT, prop. 2.1.4.10]]) If $j$ is a [[model structure for quasi-categories|weak equivalence in]] $sSet_{Joyal}$, then this is a [[Quillen equivalence]]. ([[Higher Topos Theory|HTT, remark. 2.1.4.11]]) \end{prop} \hypertarget{GrothendieckConstruction}{}\subsubsection*{{Grothendieck construction}}\label{GrothendieckConstruction} \begin{prop} \label{}\hypertarget{}{} \textbf{($(\infty,1)$-Grothendieck construction)} For $C$ a [[simplicially enriched category]] and $S = N(C)$ its [[homotopy coherent nerve]], there is a [[Quillen equivalence]] \begin{displaymath} (sSet/S)_{lfib} \stackrel{\leftarrow}{\to} [C, sSet_{Quillen}] \end{displaymath} between the model structure for left fibrations over $S$ and the [[global model structure on functors|global model structure on sSet-functors]] on $C$ with values in [[sSet]] equipped with the standard [[model structure on simplicial sets]]. \end{prop} For more on this see [[(∞,1)-Grothendieck construction]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} The [[operad|operadic]] generalization is the \begin{itemize}% \item [[model structure for dendroidal left fibrations]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} This is the content of section 2.1.4 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} There the model structure $(sSet/S)_{lfib}$ is called the \textbf{covariant model structure} and the model structure $(sSet/S)_{rfib}$ the \textbf{contravariant model structure}. The alternative construction as a localization is mentioned in \begin{itemize}% \item [[Gijs Heuts]], [[Ieke Moerdijk]], \emph{Left fibrations and homotopy colimits}. \href{http://dx.doi.org/10.1007/s00209-014-1390-7}{DOI}, (\href{http://arxiv.org/abs/1308.0704}{arXiv:1308.0704}) \end{itemize} Further discussion is in \begin{itemize}% \item [[Danny Stevenson]], \emph{Covariant Model Structures and Simplicial Localization} (\href{http://arxiv.org/abs/1512.04815}{arXiv:1512.04815}) \end{itemize} [[!redirects model structure for right fibrations]] [[!redirects covariant model structure]] [[!redirects contravariant model structure]] \end{document}