\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on algebras over an operad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{existence}{Existence}\dotfill \pageref*{existence} \linebreak \noindent\hyperlink{cofibrant_operads}{Cofibrant operads}\dotfill \pageref*{cofibrant_operads} \linebreak \noindent\hyperlink{objects}{$G$-objects}\dotfill \pageref*{objects} \linebreak \noindent\hyperlink{coloured_operads}{Coloured operads}\dotfill \pageref*{coloured_operads} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{existence_by_coalgebra_intervals}{Existence by coalgebra intervals}\dotfill \pageref*{existence_by_coalgebra_intervals} \linebreak \noindent\hyperlink{RectificationOfAlgebras}{Rectification of algebras}\dotfill \pageref*{RectificationOfAlgebras} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{monoids_associative_algebras}{Monoids (associative algebras)}\dotfill \pageref*{monoids_associative_algebras} \linebreak \noindent\hyperlink{AInfAlgebras}{$A_\infty$-Algebras}\dotfill \pageref*{AInfAlgebras} \linebreak \noindent\hyperlink{algebras_and_simplicial_lie_algebras}{$L_\infty$-algebras and simplicial Lie algebras}\dotfill \pageref*{algebras_and_simplicial_lie_algebras} \linebreak \noindent\hyperlink{HomotopyCoherentDiagrams}{Homotopy coherent diagrams}\dotfill \pageref*{HomotopyCoherentDiagrams} \linebreak \noindent\hyperlink{InfCatOfMods}{$(\infty,1)$-Categories of algebras and bimodules over an operad}\dotfill \pageref*{InfCatOfMods} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure on a [[category]] of [[algebras over an operad]] enriched in some suitable [[homotopical category]] $\mathcal{E}$ is supposed to be a [[presentable (infinity,1)-category|presentation]] of the [[(∞,1)-category]] of [[∞-algebras over an (∞,1)-operad]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{existence}{}\subsection*{{Existence}}\label{existence} \hypertarget{cofibrant_operads}{}\subsubsection*{{Cofibrant operads}}\label{cofibrant_operads} \begin{utheorem} Let $C$ be a [[cofibrantly generated model category|cofibrantly generated]] [[symmetric monoidal model category]]. Let $O$ be a [[cofibrant object|cofibrant]] [[operad]]. If $C$ satisfies the [[monoid axiom in a monoidal model category]], then there is an induced [[model structure]] on the category $Alg_C(O)$ of [[algebras over an operad]]. \end{utheorem} See (\hyperlink{Spitzweck01}{Spitzweck 01}, Theorem 4). \hypertarget{objects}{}\subsubsection*{{$G$-objects}}\label{objects} \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{E}$ be a [[category]] equipped with the structure of \begin{itemize}% \item a [[closed monoidal category|closed]] [[symmetric monoidal category]]; \item a [[monoidal model category]]; \end{itemize} such that \begin{itemize}% \item the model structure is [[cofibrantly generated model category|cofibrantly generated]]; \item the tensor unit $I$ is cofibrant. \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} Under these conditions there is for each [[finite group]] $G$ the structure of a [[monoidal model category]] on the category $\mathcal{E}^{\mathbf{B}G}$ of objects in $\mathcal{E}$ equipped with a $G$-[[action]], for which the [[forgetful functor]] \begin{displaymath} \mathcal{E}^{\mathbf{B}G} \to \mathcal{E} \end{displaymath} preserves and reflects fibrations and weak equivalences. \end{prop} This is discussed in the examples at \emph{[[monoidal model category]]}. \hypertarget{coloured_operads}{}\subsubsection*{{Coloured operads}}\label{coloured_operads} For $C \in$ [[Set]] a set of colours and $P$ a $C$-[[coloured operad]] in $\mathcal{E}$ we write $Alg_{\mathcal{E}}(P)$ for the category of $P$-[[algebras over an operad]]. There is a [[forgetful functor]] \begin{displaymath} U_P \;\colon\; Alg_{\mathcal{E}}(P) \to \mathcal{E}^C \end{displaymath} from the category of [[algebra over an operad|algebras over the operad]] in $\mathcal{E}$ to the underlying $C$-colored objects of $\mathcal{E}$. \begin{defn} \label{admissible}\hypertarget{admissible}{} A $C$-[[coloured operad]] $P$ is called \textbf{admissible} if the [[transferred model structure]] on $Alg_{\mathcal{E}}(P)$ along the [[forgetful functor]] \begin{displaymath} U_P : Alg_{\mathcal{E}}(P) \to \mathcal{E}^{C} \end{displaymath} exists. \end{defn} \begin{defn} \label{}\hypertarget{}{} So if $P$ is admissible, then $Alg_{\mathcal{E}}(P)$ carries the model structure where a morphism of $P$ algebras $f : A \to B$ is a fibration or weak equivalence if the underlying morphism in $\mathcal{E}$ is, respectively. Below we discuss general properties of $P$ under which this model structure indeed exists. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{existence_by_coalgebra_intervals}{}\subsubsection*{{Existence by coalgebra intervals}}\label{existence_by_coalgebra_intervals} The above [[transferred model structure]] on [[algebras over an operad]] exists if there is a suitable [[interval object]] in $\mathcal{E}$. \begin{defn} \label{}\hypertarget{}{} A \textbf{cocommutative coalgebra [[interval object]]} $H\in \mathcal{E}$ is \begin{itemize}% \item a cocommutative co-unital [[comonoid]] in $\mathcal{E}$ \item equipped with a factorization \begin{displaymath} \nabla : I \coprod I \hookrightarrow H \to I \end{displaymath} of the [[codiagonal]] on $I$ into two [[homomorphism]]s of comonoids with the first a cofibration and the second a weak equivalence in $\mathcal{E}$. \end{itemize} \end{defn} \begin{example} \label{}\hypertarget{}{} Such cocommutative coalgebra intervals exist in \begin{itemize}% \item the [[model structure on topological spaces|model structure on compactly generated topological spaces]]; \item the [[model structure on simplicial sets]]; \item the [[model structure on symmetric spectra]]. \end{itemize} In \begin{itemize}% \item the [[model structure on chain complexes]] \end{itemize} there is a coalgebra interval. \end{example} \begin{theorem} \label{}\hypertarget{}{} If $\mathcal{E}$ has a [[symmetric monoidal functor|symmetric monoidal]] fibrant replacement functor and a coalgebra [[interval object]] $H$ then every non-symmetric [[coloured operad]] in $\mathcal{E}$ is admissible, def. \ref{admissible}: the [[transferred model structure]] on algebras exists. If the interval is moreover cocommutative, then the same is true for every symmetric coloured operad. \end{theorem} This is (\hyperlink{BergerMoerdiskAlgebras}{BergerMoerdijk, theorem 2.1}), following (\hyperlink{BergerMoerdijkHomotopy}{BergerMoerdijk-Homotopy, theorem 3.2}). For more details see at \emph{[[model structure on operads]]}. \begin{remark} \label{}\hypertarget{}{} Since the coalgebra interval in the [[category of chain complexes]] is not cocommutative, this case requires special discussion, as some of the statements below will not apply to it. For more on this case see \emph{[[model structure on dg-algebras over an operad]]}. \end{remark} \hypertarget{RectificationOfAlgebras}{}\subsubsection*{{Rectification of algebras}}\label{RectificationOfAlgebras} Recall the notion of resolutions of operads and of the \emph{[[Boardman-Vogt resolution]]} $W(H,P)$ from [[model structure on operads]]. We now discuss conditions under which model categories of algebras over a resolved operad is Quillen equivalent to that over the original operad. This yields general \emph{[[rectification]]} results for homotopy-algebras over an operad (see also the \emph{\hyperlink{Examples}{Examples}} below.) \begin{theorem} \label{}\hypertarget{}{} Let $\mathcal{E}$ be in addition a [[left proper model category]]. Then for $\phi : P \to Q$ a weak equivalence between admissible $\Sigma$-cofibrant well-pointed $C$-coloured operads in $\mathcal{E}$, the [[adjunction]] \begin{displaymath} (\phi_! \dashv \phi^*) : Alg_\mathcal{E}(P) \stackrel{\leftarrow}{\to} Alg_\mathcal{E}(Q) \end{displaymath} is a [[Quillen equivalence]]. \end{theorem} This is (\hyperlink{BergerMoerdijkAlgebras}{BergerMoerdijk, theorem 4.1}). \begin{theorem} \label{RectificationTheorem}\hypertarget{RectificationTheorem}{} \textbf{(rectification of homotopy $T$-algebras)} Let still $\mathcal{E}$ be left proper. Let $P$ be an admissible $\Sigma$-cofibrant operad in $\mathcal{E}$ such that also $W(H,P)$ is admissible. Then \begin{displaymath} (\epsilon_! \dashv \epsilon^*) : Alg_\mathcal{E}(P) \stackrel{\leftarrow}{\to} Alg_\mathcal{E}(W(H,P)) \end{displaymath} is a [[Quillen equivalence]]. \end{theorem} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{monoids_associative_algebras}{}\subsubsection*{{Monoids (associative algebras)}}\label{monoids_associative_algebras} For $P = Assoc$ the [[associative operad]] it category of algebras $Alg_{\mathcal{E}} P$ is the [[category of monoids]] in $\mathcal{E}$. The above model structure on $Alg_{\mathcal{E}} P$ is the standard [[model structure on monoids in a monoidal model category]]. \hypertarget{AInfAlgebras}{}\subsubsection*{{$A_\infty$-Algebras}}\label{AInfAlgebras} Let $Assoc$ be the [[associative operad]] in [[Set]] regarded as an operad in [[Top]] under the [[discrete space]] embedding $Disc : Set \to Top$. Let $I_*$ be the operad whose algebras are pointed objects. There is a canonical morphism $i : I_* \to Assoc$. \begin{lemma} \label{}\hypertarget{}{} The [[relative Boardman-Vogt resolution]] \begin{displaymath} I_* \hookrightarrow I_*[i] \hookrightarrow W([0,1], I_* \to Assoc) \stackrel{\simeq}{\to} Assoc \end{displaymath} produces precisely [[Jim Stasheff|Stasheff]]`s [[A-∞ operad]]. \end{lemma} This is (\hyperlink{BergerMoerdijkAlgebras}{BergerMoerdijk, page 13}) \begin{cor} \label{}\hypertarget{}{} Every [[A-∞ space]] is equivalent as an $A_\infty$-space to a topological [[monoid]]. \end{cor} \begin{proof} This follows from the \hyperlink{RectificationTheorem}{rectification theorem}, using that by the above algebras over $W([0,1], I_* \to Assoc)$ are precisely [[A-∞ space]]s. \end{proof} \begin{remark} \label{}\hypertarget{}{} This is a classical statement. See [[A-∞ algebra]] for background and references. \end{remark} \hypertarget{algebras_and_simplicial_lie_algebras}{}\subsubsection*{{$L_\infty$-algebras and simplicial Lie algebras}}\label{algebras_and_simplicial_lie_algebras} Let $Lie$ be the [[Lie operad]]. A cofibrant resolution is $L_\infty$, the operad whose algebras in [[chain complex]]es are [[L-infinity algebras]]. Now (\ldots{}) \hypertarget{HomotopyCoherentDiagrams}{}\subsubsection*{{Homotopy coherent diagrams}}\label{HomotopyCoherentDiagrams} Let $C$ be a small $\mathcal{E}$-[[enriched category]] with set of objects $Obj(C)$. There is an operad $Diag_{C}$ \begin{displaymath} Diag_C(c_1, \cdots, c_n;c) = \left\{ \itexarray{ C(c_1, c) & if n = 1 \\ \emptyset & otherwise } \right. \end{displaymath} whose algebras are [[enriched functor]]s \begin{displaymath} F : C \to \mathcal{E} \,, \end{displaymath} hence [[diagram]]s in $\mathcal{E}$. Then the [[Boardman-Vogt resolution]] \begin{displaymath} HoCoDiag_C := W(H,Diag_C) \end{displaymath} is the operad for [[homotopy coherent diagram]]s over $C$ in $\mathcal{E}$. The [[rectification]] theorem above now says that every homotopy coherent diagram is equivalent to an ordinary $\mathcal{E}$-diagram. For $\mathcal{E} =$ [[Top]] this is known as [[Vogt's theorem]]. \hypertarget{InfCatOfMods}{}\subsubsection*{{$(\infty,1)$-Categories of algebras and bimodules over an operad}}\label{InfCatOfMods} The constuction $Alg_{\mathcal{E}}(P)$ of a category of [[algebras over an operad]] is contravariantly functorial in $P$. Therefore if $P^\bullet$ is a [[cosimplicial object]] in the category of operads, we have that $Alg_{\mathcal{E}}(P^\bullet)$ is a (large) [[simplicial category]] of algebras. Moreover, the [[Boardman-Vogt resolution]] $W(P)$ is functorial in $P$. These two facts together allow us to construct simplicial categories of homotopy algebras. Specifically, there is a cosimplicial operad $Assoc^\bullet$ which \begin{itemize}% \item in degree 0 is the usual [[associative operad]] $Assoc^0 = Assoc$, \item in degree 1 is the operad whose algebras are triples consisting of two associative monoids and one [[bimodule]] between them; \item in degree 2 it is the operad whose algebras are tuples consisting of three associative algebras $A_0, A_1, A_2$ as well as one $A_i$-$A_j$-bimodule $N_{ i j}$ for each $0 \leq i \lt j \leq 2$ and a homomorphism of bimodules \begin{displaymath} N_{0 1} \otimes_{A_1} N_{1 2} \to N_{0 2} \end{displaymath} \item and so on. \end{itemize} The simplicial category of algebras over $Assoc^\bullet$ is one incarnation of the [[2-category]] of algebras, bimodules and bimodules homomorphisms. We can pass to the corresponding $\infty$-algebras by applying the [[Boardman-Vogt resolution]] to the entire cosimplicial diagram of operads, to obtain the cosimplicial [[A-∞ operad]] \begin{displaymath} A_\infty^\bullet := W(Assoc^\bullet) \,. \end{displaymath} The [[simplicial category]] of algebras over this has as objects [[A-∞ algebra]]s, as morphism bimodules between these, and so on. This is discussed in (\hyperlink{BergerMoerdijkAlgebras}{BergerMoerdijkAlgebras, section 6}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on monoids in a monoidal model category]] \begin{itemize}% \item [[model structure on dg-algebras]] \item [[model structure for ring spectra]] \end{itemize} \item [[algebra over a monad]] [[∞-algebra over an (∞,1)-monad]] \begin{itemize}% \item [[model structure on algebras over a monad]] \end{itemize} \item [[algebra over an algebraic theory]] [[∞-algebra over an (∞,1)-algebraic theory]] \begin{itemize}% \item [[homotopy T-algebra]] / [[model structure on simplicial T-algebras]] \end{itemize} \item [[(∞,1)-operad]], [[model structure on operads]] \begin{itemize}% \item [[algebra over an (∞,1)-operad]], \textbf{model structure on algebras over an operad} \begin{itemize}% \item [[module over an algebra over an (∞,1)-operad]], [[model structure on modules over an algebra over an operad]] \end{itemize} \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A general discussion of the [[model structure on operads]] is in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Axiomatic homotopy theory for operads} Comment. Math. Helv. 78 (2003), 805--831. (\href{http://arxiv.org/abs/math/0206094}{arXiv:math/0206094}) \end{itemize} See also \begin{itemize}% \item [[Markus Spitzweck]], \emph{Operads, Algebras and Modules in General Model Categories}, \href{http://arxiv.org/abs/math/0101102}{arXiv:math/0101102}. \end{itemize} The concrete construction of the specific cofibrant resolutions in these structures going by the name [[Boardman-Vogt resolution]] is in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{The Boardman-Vogt resolution of operads in monoidal model categories}, Topology 45 (2006), 807--849. (\href{http://math.unice.fr/~cberger/BV.pdf}{pdf}) \end{itemize} The discussion of the model structure on algebras over a suitable operad is in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Resolution of coloured operads and rectification of homotopy algebras} (\href{http://arxiv.org/abs/math/0512576}{arXiv:math/0512576}) \end{itemize} More discussion on the transport of operad algebra structures along [[Quillen adjunctions]]/[[Bousfield localization of model categories|Bousfield localizations]] between the underlying model categories is in \begin{itemize}% \item [[Carles Casacuberta]], [[Javier Gutiérrez]], [[Ieke Moerdijk]], [[Rainer Vogt]], \emph{Localization of algebras over coloured operads}, Proceedings of the London Mathematical Society (3) 101 (2010), no. 1, 105-136 (\href{http://arxiv.org/abs/0806.3983}{arXiv:0806.3983}) \item [[Javier Gutiérrez]], \emph{Transfer of algebras over operads along derived Quillen adjunctions}, Journal of the London Mathematical Society 86 (2012), 607-625 (\href{http://arxiv.org/abs/1104.0584}{arXiv:1104.0584}) \end{itemize} Discussion with an eye towards [[ring spectra]] realized as [[symmetric spectra]] is in \begin{itemize}% \item [[Stefan Schwede]], section III.6 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} Discussion with application to [[homotopical algebraic quantum field theory]] is in \begin{itemize}% \item [[Marco Benini]], [[Alexander Schenkel]], [[Lukas Woike]], \emph{Homotopy theory of algebraic quantum field theories} (\href{https://arxiv.org/abs/1805.08795}{arXiv:1805.08795}) \end{itemize} [[!redirects model structures on algebras over an operad]] [[!redirects model category of algebras over an operad]] [[!redirects model categories of algebras over an operad]] \end{document}