\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on an over category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cofibrant_generation_properness_combinatoriality}{Cofibrant generation, properness, combinatoriality}\dotfill \pageref*{cofibrant_generation_properness_combinatoriality} \linebreak \noindent\hyperlink{derived_homspaces}{Derived hom-spaces}\dotfill \pageref*{derived_homspaces} \linebreak \noindent\hyperlink{quillen_adjunctions_between_slice_categories}{Quillen adjunctions between slice categories}\dotfill \pageref*{quillen_adjunctions_between_slice_categories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{}\hypertarget{}{} For $C$ a [[model category]] and $X \in C$ an [[object]], the [[over category]] $C/X$ as well as the [[undercategory]] $X/C$ inherit themselves structures of model categories whose [[fibrations]], [[cofibration]]s and [[weak equivalences]] are precisely the morphism that become fibrations, cofibrations and weak equivalences in $C$ under the forgetful functor $C/X \to C$ or $X/C \to C$. \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cofibrant_generation_properness_combinatoriality}{}\subsubsection*{{Cofibrant generation, properness, combinatoriality}}\label{cofibrant_generation_properness_combinatoriality} \begin{prop} \label{ModelStructureInheritsGoodProperties}\hypertarget{ModelStructureInheritsGoodProperties}{} If $\mathcal{C}$ is \begin{itemize}% \item a [[cofibrantly generated model category]] \item or a [[proper model category]] \item or a [[cellular model category]] \end{itemize} then so are $\mathcal{C}_{/X}$ and $\mathcal{C}^{X/}$. More in detail, if $I,J \subset Mor(\mathcal{C})$ are the classes of [[generating cofibrations]] and of generating acylic cofibrations of $\mathcal{C}$, respectively, then \begin{itemize}% \item the generating (acyclic) cofibrations of $\mathcal{C}^{X/}$ are the image under $X \sqcup(-)$ of those of $\mathcal{C}$. \end{itemize} \end{prop} This is spelled out in (\hyperlink{Hirschhorn05}{Hirschhorn 05}). \begin{prop} \label{ModelStructureInheritsCombinatorial}\hypertarget{ModelStructureInheritsCombinatorial}{} If $\mathcal{C}$ is a [[combinatorial model category]], then so is $\mathcal{C}_{/X}$. \end{prop} \begin{proof} By \href{locally+presentable+category#Properties}{basic properties} of [[locally presentable categories]] they are stable under slicing. Hence with $\mathcal{C}$ locally presentable also $\mathcal{C}_{/X}$ is, and by prop. \ref{ModelStructureInheritsGoodProperties} with $\mathcal{C}$ cofibrantly generated also $\mathcal{C}_{/X}$ is. \end{proof} \begin{prop} \label{ModelStructureInheritsEnriched}\hypertarget{ModelStructureInheritsEnriched}{} If $\mathcal{C}$ is an [[cartesian enriched model category]], then so is $\mathcal{C}_{/X}$. \end{prop} \begin{proof} By basic properties of [[cartesian enriched categories]] they are stable under slicing, where tensoring is computed in $\mathcal{C}$. Hence with $\mathcal{C}$ enriched also $\mathcal{C}_{/X}$ is. The [[pushout product axiom]] now follows from the fact that in overcategories pushouts can be computed in the underlying category $\mathcal{C}$. The [[unit axiom]] follows from the unit axiom of $\mathcal{C}$ using the fact that tensorings are computed in $\mathcal{C}$. \end{proof} \hypertarget{derived_homspaces}{}\subsubsection*{{Derived hom-spaces}}\label{derived_homspaces} \begin{prop} \label{PresentationOfSliceInfinityCat}\hypertarget{PresentationOfSliceInfinityCat}{} If $C$ is a [[simplicial model category]] and $X \in C$ is fibrant, then the [[overcategory]] $C/X$ with the above slice model structure is a [[presentable (infinity,1)-category|presentation]] of the [[over-(∞,1)-category]] $C^\circ / X$: we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} (C/X)^\circ \simeq C^\circ / X \,. \end{displaymath} \end{prop} \begin{proof} It is clear that we have an [[essentially surjective (∞,1)-functor]] $C^\circ/X \to (C/X)^\circ$. What has to be shown is that this is a [[full and faithful (∞,1)-functor]] in that it is an [[equivalence in an (∞,1)-category|equivalence]] on all [[hom-object|hom]]-[[∞-groupoid]]s $C^\circ/X(a,b) \simeq (C/X)^\circ(a,b)$. To see this, notice that the hom-space in an [[over-(∞,1)-category]] $C^\circ/X$ between objects $a : A \to X$ and $b : B \to X$ is given (as discussed there) by the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ C^\circ/X(A \stackrel{a}{\to} X, B \stackrel{b}{\to} X) &\to& C^\circ(A,B) \\ \downarrow && \downarrow^{\mathrlap{b_*}} \\ {*} &\stackrel{a}{\to}& C^\circ(A,X) } \end{displaymath} in [[∞Grpd]]. Let $A \in C$ be a cofibrant representative and $b : B \to X$ be a fibration representative in $C$ (which always exists) of the objects of these names in $C^\circ$, respectively. In terms of these we have a cofibration \begin{displaymath} \itexarray{ \emptyset &&\hookrightarrow&& A \\ & \searrow && \swarrow_{\mathrlap{a}} \\ && X } \end{displaymath} in $C/X$, exhibiting $a$ as a cofibrant object of $C/X$; and a fibration \begin{displaymath} \itexarray{ B &&\stackrel{b}{\to}&& X \\ & {}_{\mathllap{b}}\searrow && \swarrow_{\mathrlap{Id}} \\ && X } \end{displaymath} in $C/X$, exhibiting $b$ as a fibrant object in $C/X$. Moreover, the diagram in [[sSet]] given by \begin{displaymath} \itexarray{ C/X(a, b) &\to& C(A,B) \\ \downarrow && \downarrow^{\mathrlap{b_*}} \\ {*} &\stackrel{a}{\to}& C(A,X) } \end{displaymath} is \begin{enumerate}% \item a [[pullback]] diagram in [[sSet]] (by the definition of morphism in an ordinary [[overcategory]]); \item a [[homotopy pullback]] in the [[model structure on simplicial sets]], because by the axioms on the [[sSet]]${}_{Quillen}$ [[enriched model category]] $C$ and the above (co)fibrancy assumptions, all objects are [[Kan complex]]es and the right vertical morphism is a [[Kan fibration]]. \item has in the top left the correct [[derived hom-space]] in $C/X$ (since $a$ is cofibrant and $b$ fibrant). \end{enumerate} This means that this correct hom-space $C/X(a,b) \simeq (C/X)^\circ(a,b) \in sSet$ is indeed a model for $C^\circ/X(a,b) \in \infty Grpd$. \end{proof} \hypertarget{quillen_adjunctions_between_slice_categories}{}\subsection*{{Quillen adjunctions between slice categories}}\label{quillen_adjunctions_between_slice_categories} \begin{prop} \label{AdjunctionSliceCat}\hypertarget{AdjunctionSliceCat}{} Given an adjunction $L\dashv R$ with $L\colon A\to B$ and $R\colon B\to A$, the following compositions define two Quillen ajdunctions between associated slice categories. If $X\in A$, then \begin{displaymath} L:A/X\leftrightarrows B/L X:R \end{displaymath} is an adjunction, where is the composition $R\colon B/L X\to A/R L X\to A/X$, the second arrow is the base change functor along the unit $X\to R L X$. If $Y\in B$, then \begin{displaymath} L:A/R Y\leftrightarrows B/Y:R \end{displaymath} is an adjunction, where $L\colon A/R Y\to B/L R Y\to B/Y$. The first adjunction is a Quillen equivalence if $X$ is cofibrant and $L X$ is fibrant. The second adjunction is a Quillen equivalence if $Y$ is fibrant. \end{prop} \begin{proof} These adjunctions are Quillen adjunctions because their left (respectively right) adjoints are left (respectively right) Quillen functors: in the model structures on slice categories (co)fibrations and weak equivalences are created by the forgetful functor to $A$ or $B$, see Hirschhorn's note (\hyperlink{Hirschhorn05}{Hirschhorn 05}). An object in $A/X$ given by an arrow $Z\to X$ is cofibrant if and only if $Z$ is cofibrant and fibrant if and only if $Z\to X$ is a fibration. Quillen's criterion for Quillen equivalences now yields the statements about equivalences. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item the [[classical model structure on pointed topological spaces]] is the model structure on the undercategory under the point of the [[classical model structure on topological spaces]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[over-category]] \begin{itemize}% \item [[slice category]] \item [[under category]] \item [[over topos]] \end{itemize} \item [[over (∞,1)-category]], \begin{itemize}% \item \textbf{model structure on an over-category} \item [[over-(∞,1)-topos]] \end{itemize} \item [[opposite model structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Philip Hirschhorn]], \emph{Overcategories and undercategories of model categories}, 2005 (\href{http://www-math.mit.edu/~psh/undercat.pdf}{pdf}) \end{itemize} [[!redirects model structure on an overcategory]] [[!redirects model structure on an under category]] [[!redirects model structure on an undercategory]] [[!redirects model structure on a slice category]] [[!redirects model structure on a coslice category]] [[!redirects model structures on a slice category]] [[!redirects model structures on a coslice category]] [[!redirects slice model category]] [[!redirects slice model categories]] [[!redirects slice model structure]] [[!redirects slice model structures]] [[!redirects coslice model category]] [[!redirects coslice model categories]] [[!redirects coslice model structure]] [[!redirects coslice model structures]] [[!redirects co-slice model category]] [[!redirects co-slice model categories]] [[!redirects co-slice model structure]] [[!redirects co-slice model structures]] \end{document}