\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on cosimplicial rings} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_model_structure}{The model structure}\dotfill \pageref*{the_model_structure} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{simplicial_model_category_structure}{Simplicial model category structure}\dotfill \pageref*{simplicial_model_category_structure} \linebreak \noindent\hyperlink{relation_to_the_model_structure_on_cochain_dgcalgebras}{Relation to the model structure on cochain dgc-algebras}\dotfill \pageref*{relation_to_the_model_structure_on_cochain_dgcalgebras} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure on [[cosimplicial objects]] in unital, [[commutative algebras]] over some [[field]] $k$. Under the [[monoidal Dold-Kan correspondence]] this is [[Quillen equivalence|Quillen equivalent]] to the [[model structure on dg-algebras|model structure on commutative non-negative cochain dg-algebras]]. \hypertarget{the_model_structure}{}\subsection*{{The model structure}}\label{the_model_structure} Let $k$ be a [[field]] of [[characteristic zero]]. \begin{defn} \label{CosimplicalCommutativeAlgebras}\hypertarget{CosimplicalCommutativeAlgebras}{} Write $cAlg_k^\Delta$ for the [[category]] of [[cosimplicial objects]] in the [[category]] of unital, [[commutative algebras]] over $k$. \end{defn} \begin{remark} \label{ComparisonFunctors}\hypertarget{ComparisonFunctors}{} Sending $k$-[[associative algebras|algebras]] to their underlying $k$-[[modules]] yields a [[forgetful functor]] \begin{displaymath} U \colon cAlg_k^\Delta \longrightarrow k Mod^\Delta \end{displaymath} from cosimplicial $k$-allgebras (def. \ref{CosimplicalCommutativeAlgebras}) to [[cosimplicial objects]] in $k$-[[vector spaces]]. Moreover, the [[Dold-Kan correspondence]] provides the [[normalized cochain complex]] functor \begin{displaymath} N \colon k Mod_k^\Delta \to Ch^{\geq 0}(k) \end{displaymath} from [[cosimplicial objects|cosimplicial]] $k$-[[vector spaces]] to [[cochain complexes]] (i.e. with [[differential]] of degree +1) in non-negative degrees. \end{remark} \begin{prop} \label{}\hypertarget{}{} Say that morphism $f \colon A \to B$ in $cAlg_k^{\Delta}$ (def. \ref{CosimplicalCommutativeAlgebras}) is \begin{enumerate}% \item a \emph{weak equivalence} if its image $N(U(f)) \colon N(U(A)) \to N(U(B))$ under the comparison functors from remark \ref{ComparisonFunctors} is a [[quasi-isomorphism]] in $Ch^{\geq 0}(k)$; \end{enumerate} 1.a \emph{fibration} if $f$ is an [[epimorphism]] (i.e. degreewise a [[surjection]]). Then \begin{enumerate}% \item this defines a [[model category]] structure, to be called the \emph{projective model structure} on comsimplicial commutative $k$-algebras. $(cAlg_k^\Delta)_{poj}$. \item this is a [[cofibrantly generated model category]] \item and a [[simplicial model category]]. \end{enumerate} \end{prop} e.g. \hyperlink{Toen00}{To\"e{}n 00, theorem 2.1.2} \begin{proof} The first two statements follow by observing that $(cAlg_k^{\Delta})_{proj} is$the [[transferred model structure]] along the [[forgetful functor]] $U \circ N$ from remark \ref{ComparisonFunctors} of the [[projective model structure on chain complexes]], by \href{transferred+model+structure#SufficientConditions}{this prop.}. The third statement is the content of prop. \ref{SimplicialModelStructure} below. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{simplicial_model_category_structure}{}\subsubsection*{{Simplicial model category structure}}\label{simplicial_model_category_structure} There is also the structure of an [[sSet]]-[[enriched category]] on $cAlg_k^\Delta$ (def. \ref{cAlgDelta}) \begin{defn} \label{cAlgDelta}\hypertarget{cAlgDelta}{} For $X$ a [[simplicial set]] and $A \in Alg_k$ let $A^X \in Alg_k^\Delta$ be the corresponding $A$-valued [[cochains on simplicial sets]] \begin{displaymath} A^X \;\colon\; [n] \mapsto (A_n)^{X_n} = \underset{X_n}{\prod} A_n \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} If we write $C(X) \coloneqq Hom_{Set}(X_\bullet,k)$ for the cosimplicial algebra of [[cochains on simplicial sets]] then for $X$ degreewise finite this may be written as \begin{displaymath} A^X = A \otimes C(X) \end{displaymath} where the tensor product is the degreewise tensor product of $k$-algebras. \end{remark} See also \hyperlink{CastiglioniCortinas03}{Castiglioni-Cortinas 03, p. 10}. \begin{defn} \label{}\hypertarget{}{} For $A,B \in Alg_k^\Delta$ define the [[sSet]]-[[hom-object]] $Alg_k^\Delta(A,B)$ by \begin{displaymath} Alg_k^\Delta(A,B) \coloneqq Hom_{sSet}(A, B^{\Delta[\bullet]}) = Hom_{sSet}(A, B \otimes C(\Delta[\bullet])) \in sSet \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} For $B \in Alg_k$ regarded as a constant cosimplicial object under the canonical embedding $Alg_k \hookrightarrow Alg_k^\Delta$ we have \begin{displaymath} Alg_k^\Delta(A, B^{\Delta[n]}) = Alg_k^\Delta(A, B \otimes C(\Delta[n])) \simeq Alg_k(A_n,B) \,. \end{displaymath} \end{remark} \begin{proof} Let $f : A \to B \otimes C(\Delta[n])$ be a morphism of cosimplicial algebras and write \begin{displaymath} f_n : A_n \to B \end{displaymath} for the component of $f$ in degree $n$ with values in the copy $B = B \otimes k$ of functions $k$ on the unique non-degenerate $n$-[[simplex]] of $\Delta[n]$. The $n+1$ coface maps $C(\Delta[n])_n \leftarrow C(\Delta[n])_{n-1}$ obtained as the pullback of the $(n+1)$ face inclusions $\Delta[n-1] \to \Delta[n]$ restrict on the non-degenerate $(n-1)$-cells to the $n+1$ projections $k \leftarrow k^{n+1} : p_i$. Accordingly, from the naturality squares for $f$ \begin{displaymath} \itexarray{ A_n &\stackrel{f_n}{\to}& B \\ \uparrow^{\mathrlap{\delta_i}} && \uparrow^{\mathrlap{p_i}} \\ A_{n-1} &\stackrel{f_{n-1}}{\to}& B^{n+1} } \end{displaymath} the bottom horizontal morphism is fixed to have components $f_{n-1} = (f_n \circ \delta_0, \cdots, f_n \circ \delta_n)$ in the functions on the non-degenerate simplices. By analogous reasoning this fixes all the components of $f$ in all lower degrees with values in the functions on degenerate simplices. \end{proof} The above [[sSet]]-[[enriched category theory|enrichment]] makes $cAlg_k^\Delta$ into a [[simplicially enriched category]] which is [[copower|tensored]] and [[power|cotensored]] over $sSet$. And this is compatible with the model category structure: \begin{prop} \label{SimplicialModelStructure}\hypertarget{SimplicialModelStructure}{} With the definitions as above, $(cAlg_k^\Delta)_{proj}$ is a [[simplicial model category]]. \end{prop} \hyperlink{Toen00}{To\"e{}n 00, theorem 2.1.2} \hypertarget{relation_to_the_model_structure_on_cochain_dgcalgebras}{}\subsubsection*{{Relation to the model structure on cochain dgc-algebras}}\label{relation_to_the_model_structure_on_cochain_dgcalgebras} Under the [[monoidal Dold-Kan correspondence]] this is related to the [[model structure on dg-algebras|model structure on commutative non-negative cochain dg-algebras]]. \hypertarget{references}{}\subsection*{{References}}\label{references} Details are in \begin{itemize}% \item [[Bertrand Toën]], section 2.1 of \emph{Affine stacks (Champs affines)} (\href{http://arxiv.org/abs/math/0012219}{arXiv:math/0012219}) . \end{itemize} See also \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]} \end{itemize} The generalization to arbitrary cosimplicial rings is proposition 9.2 of \begin{itemize}% \item J.L. Castiglioni G. Corti\~n{}as, \emph{Cosimplicial versus DG-rings: a version of the Dold-Kan correspondence} (\href{http://arxiv.org/abs/math/0306289}{arXiv:math/0306289}) \end{itemize} There also aspects of relation to the [[model structure on dg-algebras]] is discussed. (See [[monoidal Dold-Kan correspondence]] for more on this). [[!redirects model structure on cosimplicial algebras]] \end{document}